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ABSTRACT 
 
For digital image acquisition systems, analysis of image noise often focuses on random sources, such as those 
associated with quantum signal detection and signal-independent fluctuations. Other important noise sources result in 
pixel-to-pixel sensitivity variations that introduce repeatable patterns into the image data. In addition, because most 
analyses use a nominally uniform target area to estimate image noise statistics, target noise can often masquerade as 
noise introduced by the device under test. We describe a method for distilling various fixed-pattern and temporal noise 
sources. The method uses several replicate digital images acquired in register. In some cases, however, evaluation of 
several digital scanners reveals scan-to-scan variation in the image registration to the input test target. To overcome this 
limitation, a modified noise estimation method is described. This includes a step to correct this scan-to-scan 
misregistration. We also show that, in some cases, measurement of temporal and fixed-pattern noise sources can be 
achieved via the noise color covariance from a single test image. 
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1. INTRODUCTION 

 
In the design, selection, and testing of image acquisition devices it is often useful to understand the magnitude and 
nature of unwanted image fluctuations. For several sources of this image noise, a statistical description is appropriate.1-3 
For example, the photon, or shot noise related to quantum detection is often modeled as a Poisson distributed random 
process. Other sources have both stochastic and predictable components. Pixel-to-pixel detector sensitivity variations 
that introduce repeatable patterns into the image data may appear to be random from unit to unit, but somewhat 
repeatable from scan-to-scan for a given scanner. When evaluating digital scanners, an additional source of image noise 
is the test target used in the measurement. This can be due to, e.g., surface texture, scratches, or the microstructure of 
the printing technology used. Because most analyses call for a nominally uniform image region over which image noise 
statistics are to be obtained, target noise can often masquerade as noise introduced by the device under test.  
 
In a previous paper,4 we described a method for distilling various fixed-pattern and temporal noise sources. The method 
uses several replicate digital images, acquired in register. A similar sampling is included in a recent ISO standard.5 
Practical evaluation of several digital scanners, however, can reveal scan-to-scan variation in the image registration to 
the input test target. While this is usually not a problem for normal product operation, it makes the above method less 
accurate. Here we extend our previous method to accommodate this characteristic and report on the use of these 
techniques, sometimes referred to as noise cracking. While the second-order statistics of the image noise (variance, rms) 
per pixel are our primary interest, the proposed methods can be extended to include the autocovariance or noise-power 
spectrum.1-3,6 We start with a summary of the previous method. 
 

2. MEASUREMENT OF NOISE COMPONENTS 
 
We can state our objective as a variance component analysis7 of several noise sources from sets of observations (image 
data). A simple additive noise model, which separates effective temporal and fixed pattern noise (FPN) contributions,8 
is adopted. For a uniform image area, the total variance is taken as the sum of its components, 
 

 ,  (1) 222
fprandomtotal σσσ +=

 

Proc. SPIE-IS&T Electronic Imaging Symposium, SPIE vol. 5294, pg. 114-123, 2004 



where  is for the temporally uncorrelated (from image to image) noise sources, and  is due to fixed pattern 
components. We do not require all noise sources to be independent and additive; we are merely interested in the 
effective components as in Eq. (1). It should be understood that observed image noise will usually vary with (mean) 
signal level and color record. For digital cameras and scanners, the fixed pattern noise can result from several sources. 
When testing a print scanner, image fluctuations can be introduced by, e.g., the platen (glass), input target, and imager. 
This leads to a breakdown of fixed pattern noise variance, e.g., 
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The procedure and analysis that follows are based on the capturing and processing of image data, which allow the 
suppression of one or more of these sources, so that the remaining sources can be estimated. The following notation is 
observed whenever possible, 

{x: V} is a set of replicate image arrays, gathered while varying parameter V. For example, 
{x: } is a set acquired by simple repeated scanning varying only in time, 
{x: target} is a set acquired by moving the target location between each sample image acquisition. 

An image data set is denoted by x , p = 1, …, P pixels, q = 1, …, Q lines, r = 1, …, R replicates. pqr

2.1 Data Collection 
In order to estimate the random temporal and fixed pattern noise variance components of Eq. 1, a set of digital images is 
need, as shown in Fig. 1. Each digital image is a simple replicate with no change in hardware or software settings, or 
placement of the test target with uniform areas. This image set, {x: }, is spatially registered for a fixed detector. 
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Figure 1. Set of image data used to estimate fixed pattern and random noise components 

 
This data set can be used to estimate the components of Eq. 1, however, a second set is needed to estimate the statistics 
of the fixed pattern noise components. The second set, {y: target}, is acquired while moving (translating) the test target 
a short distance between repeated image captures.  

2.2 Fixed Pattern and Random Noise Estimation 
The first step in the isolation of the random (frame-to-frame temporal) image noise is to compute the overall variance 
for all pixel values in the set of R registered replicate digital images, {x }. This is done in two steps. After calculating the 
grand sample mean in Eq. 3, the total sample variance is found 

 ∑∑∑
= = =

=
P

p

Q

q

R

r
pqrx

PQR
x

1 1 1

1
 (3) 



 ( )∑∑∑
= = =

−
−

=
P

p

Q

q

R

r
pqrtotal xx

PQR
s

1 1 1

22

1
1

. (4) 

Note that in Eq. 4 each pixel (observation) is treated as independent. The fixed pattern noise, however, has been 
observed R times for each image pixel location. This suggests that an inter-image averaging may be useful in identifying 
this noise source. This is accomplished by, 
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where pqx  is an array of mean values. This array can provide an estimate of the fixed pattern noise variance, however, a 
direct estimate of the random temporal noise variance is first obtained via the inter-image sample variance array. This is 
given by, 
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This array is then used in a pooled estimate of the random temporal noise variance, 
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where ^ indicates an estimate. 
    
The fixed pattern variance estimate is computed from the arrays of Eqs. 3 and 7 
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where the double summation term is the mean-squared error of the array of inter-image means, and the last term of the 
RHS ensures that an unbiased estimate is computed, as shown in the Appendix. The two estimated noise variances can 
then be combined to see to what extent Eq. 2 holds for the imaging system under study, 
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2.4 Fixed Pattern Noise Component Estimation 
If a separation of scanner and target-induced fixed pattern noise variance is desired, the second set of digital images can 
be used. Recall that each digital image in {y: target} was captured over the same scanner platen area and with the same 
region of the scanning detector array, but with shifted target. The inter-record average of these images, therefore, will 
provide a measure with reduced random noise and FPN due to the target. Thus the fixed pattern noise due to the imager 
is estimated using a procedure similar to that of Eqs. 7 and 8. First the grand mean, y , and mean and variance arrays 
are computed 
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A pooled variance estimate of the sum of target FPN and random components is 
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The fixed pattern noise variance for the imager (detector, optics and platen) is found from the mean-squared fluctuations 
across the mean array, corrected as in Eq. 8 for the bias due to the random and target noise sources 
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The FPN variance due to the target is 
 . (11) 222 ˆˆˆ imagerfp σσσ −=target

 
The following characterize the imaging system noise components 
 
  total noise 2

totals

  total fixed pattern 2ˆ fpσ

  fixed pattern from imager, optics and platen 2ˆ imagerσ

  random temporal. 2ˆ randomσ
 

2.5 Example 
Several gray Munsel matte paper samples were used as uniform areas on a test target. Several replicate digital images 
were collected with software driver parameters set consistent with general print scanning operations (e.g., 24 bit color, 
gamma=2.2, 300 pixels per inch). Five digital images (R=5) were chosen as set {x: } in the above noise source 
estimation procedure. Figure 2 shows the results for thirty patches for the green color record, each with a different mean 
signal level. Note that particularly for high mean values, the observed image noise is dominated by fixed pattern image 
fluctuations. As a test of whether Eq. 2 holds for this scanner, the fixed pattern random temporal variance values were 
added and the resulting RMS values compared with that for the total noise. The results, shown in Fig. 3, were in 
agreement, indicating than Eq. 2 approximately holds for this device. 
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Figure 2. Measured total, fixed pattern and random RMS noise for a desk top scanner using temporal method (units are digital signal 
values, 0-255) 
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Figure 3. Comparison of total noise and the combined (in quadrature) fixed pattern and temporal random sources for a desk top 
scanner using temporal method 

 
3. MODIFIED METHOD 

 
The above method for distilling the various image noise sources for image acquisition systems has been used 
successfully. For several systems which include a moveable imager assembly, such as desktop scanners with a linear 
detector array, minor translation errors from scan-to-scan make the acquisition of the registered data set {x: } difficult. 
The same situation occurs in high speed document and film scanners. One solution is to screen the digital images for 
minimal misregistration and select those most compatible with the analysis. In some cases this is not practical. Note that 
most minor, usually one-dimensional, image translation is normally of no importance during scanning operations, since 
replicate scans are rarely compared in this way. 

3.1 Data and Analysis  
Since the intent of most device measurement is to conducted measurements in situ, rather than in an unrealistic 
(stationary) fixture, the challenge was to modify the above method to accommodate this situation. A solution is to first 
detect the magnitude of the scan-to-scan translation, and then to re-register the replicate image arrays with respect to the 
input target features. Figure 4 shows an outline of the modified procedure, which we will now describe in detail. 
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Figure 4. Steps in the modified method 

 
Consider the set of R replicate image arrays, where each is now subject to a translation error with respect to the input 
test target. In the notation used above, this set is {x: target}. We will use many of the same steps, starting with 
computing the grand sample mean, x , and variance, , using Eqs. 3 and 4. As before, we then compute the inter-2

totals



image mean, pqx , and variance,  arrays by Eqs. 5 and 6. From the variance array, the pooled variance is computed 
for all pixels as in Eq. 7, however; since the input target is not registered with this data set, this inter-image pooled 
variance includes both random temporal and target variation. The pooled variance is 
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The mean-squared fluctuations across the inter-image mean array is computed, this is taken as equal to the sum of three 
terms, 
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using the results of the Appendix. 
 
As shown in Fig. 4, the next step is to translate the image arrays in {x, target} so that each is in register with respect to 
the input target. This can be done using a phase correlation9 approach in either the spatial domain or by discrete Fourier 
transforms. Details of this approach will not be discussed here, except to note that the method can be used to detect and 
report image misregistration prior to translating the arrays. The aligned version of the image data set will now not be 
aligned with respect to the imager in the scanner under test, and we will use this in the analysis. 
 
The ‘alligned’ data set, we denote as {y: imager}. As before, we compute the inter-image mean, pqy , and variance, 

 arrays by Eqs. 5 and 6. From the variance array, the pooled variance is computed for all pixels as in Eq. 7, 
however, since the imager is now not registered with this data set, this inter-image pooled variance includes both 
random temporal and imager variation, so the mean pooled variance, as in Eq. 12, is 
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As before, we compute the sample variance across the inter-image mean array, as in Eq. 13 is the sum of three terms  
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For the above modified method, the following noise variance estimates are taken as characterizing the system under test, 
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4. SIMPLIFIED COLOR CORRELATION METHOD 

4.1 Data and Estimation Procedure 
While the original noise distillation method is intended to be most general, as we have seen the requirements for the 
input image data may not always be met for digital scanners. The modified method, with the addition of the automated 
spatial registration step can accommodate the evaluation of most digital scanners. For field use, however, it is not 
always convenient to collect a series of replicate images. The search for a simplified method based on single test images 
led to an investigation into the use of the inter-record noise covariance. Consider the case where a neutral gray target is 
scanned for the purposes of noise evaluation. If the imager or target were subject to fixed pattern noise sources, we 
would expect a correlation between fluctuations in the red, green and blue color records. We observe this when 
scanning photographic film, where the structure of the film grain introduces both spatial and color correlation into the 
image fluctuations. Inkjet prints also can impart such noise correlation. 
 
If we have a three-color digital image, the (3x3) color covariance matrix, in common notation given by 
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 which has six unique elements. The diagonal elements are the variances values, , etc. As for the RMS noise 
(variance), the covariance matrix for image noise will often vary with mean signal level. For nominally uniform image 
data, the covariance matrix can be estimated element-by-element by the sample covariance, e.g., 
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where the red, green and blue image arrays are . ,pqr ,pqg pqb
 
Several aspects of an image acquisition system can influence the noise color correlation. Unwanted mixing of the three 
color-records, crosstalk, at the detector or during signal readout can introduce or modify the off-diagonal elements of 
the matrix. In addition, signal mixing via a matrix or 3-D look-up table operation, as part of normal image processing 
will modify the matrix.10 The presence of inter-color fixed pattern noise will also influence the color variance matrix. 
For digital scanners with little to no color signal mixing or color channel misregistration, it was suggested that the 
estimated color covariance matrix could provide a measure of fixed pattern noise due to the input target 
 
Since the amplitude of image noise observed in digital images is usually different in each of the color records, we chose 
to use the normalized form of the covariance matrix, to estimate the relative amount of variation (fraction of the 
variance). The elements of the correlation matrix are scaled as 
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and the diagonal elements are unity. The fraction of the variance component in the red image record due to the green 
and blue record was taken as, and , respectively. One estimate of the random temporal variance in the red record, 
therefore, is 
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However, a second estimate is provided by the red-blue correlation, 
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Combining these two values in a simple average provided an estimate of the random temporal noise variance in the red 
color record, 
 

 






 +
−=

2
1ˆ 2

l 
2
 

rbrg
totarrandomr

cc
σσ , (19) 

 
and the corresponding estimate of the fixed pattern noise, 
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It should be noted that, if needed, we could also correct this estimate for the correlation between green and blue color 
records in the estimate of the red fixed pattern noise. 
 

4.2 Example 
Figure 5 compares the color correlation and original temporal methods for RMS random noise estimation. Image 
processing and registration assumptions for the two techniques were verified. The test target contained a series of gray 
uniform patches, and was scanned using a desktop scanner at 600 pixels per inch sampling. The results from the 
correlation method and a single test image were consistent with those from the temporal noise cracking method with R 
= 5. As in this example, we observe that the correlated noise estimation results have more variability than those from the 
temporal method. The general conclusions regarding the fraction of noise due to random temporal sources, however, are 
consistent. 
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Figure 5. Comparison of simplified color correlation method and original temporal method for estimating the RMS random noise of a 
desk top scanner 

 
 



5. CONCLUSIONS 
 
Image capture and data processing methods for measuring the statistics of component noise sources for digital scanners 
have been presented. This information is useful for product comparison, performance verification, fixed pattern 
correction evaluation and target noise specification. The statistical analysis of variance approach can be applied to 
multiple registered data sets in a way that identifies temporal and repeated image fluctuation due to the digital scanner 
being tested, and bias introduced to the test target being used. In addition, two abbreviated methods have also been 
discussed. The modified method can be used for systems when registration with an input test target is impractical. When 
testing on a single digital image is desired, we have also shown that in some cases, the color noise correlation can also 
be used to separate random temporal and fixed pattern noise statistics. Application of these methods to actual scanners 
showed good agreement between explicit noise calculations and those inferred from the simple additive model used. In 
several cases, observed fixed pattern components were found to dominate system noise performance.  
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APPENDIX: UNBIASED ESTIMATION OF FIXED PATTERN VARIANCE 
 
Let the data set {x: } result from the sampling of the sum of independent random and fixed pattern normal random 
variables, 

 rpqpqr xx ε+=
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The first term of the RHS Eq. a1 is due to the fixed pattern and the second term the random component. Note that for 
any single image pixel value , is observed once at each pixel. We form pqx ε pqx by computing the sample mean at 
each pixel 
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This allows us to reduce the influence of random (temporal) fluctuations on the estimate of , but not eliminate it. 

This can be addressed by considering the statistics of 
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if we assume that each replicate image is an independent observation of . We now estimate the fixed pattern 

variance by computing the mean-squared variation across the array
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From Eq. a4 and a2 we see that the expected value of this estimate is  
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where we rely on  being the sum of independent normal random variables. The second term represents the bias that 
is a decreasing function of R. An unbiased estimate of the fixed pattern variance is found by 
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where the random temporal variance estimate is given in Eq. 7. Equations 8 and 15 use this result. 
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