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Abstract: We apply multivariate error-propagation analy-
sis to color-signal transformations. Results are given that
indicate how linear, matrix, and nonlinear transforma-
tions influence the mean, variance, and covariance of
color-measurements and color-images. Since many signal
processing paths include these steps, the analysis is appli-
cable to color-measurement and imaging systems. Ex-
pressions are given that allow image noise or error prop-
agation for a spectrophotometer, colorimeter, or digital
camera. In a computed example, error statistics are prop-
agated from tristimulus values to CIELAB coordinates.
The resulting signal covariance is interpreted in terms of
CIELAB error ellipsoids and the mean value of color-
difference measures, AE} and AEg. The application of
this analysis to system design is also illustrated by relat-
ing a AEg tolerance to equivalent tristimulus-value error
statistics. © 1997 John Wiley & Sons, Inc. Col Res Appl, 22, 280—
289, 1997
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INTRODUCTION

During the specification, design, and use of color-mea-
surement and color-image acquisition systems, much at-
tention is given to the ability to capture and preserve the
required color information. Once acquired, it is common
to transform detected signal data between color spaces,
e.g., between spectral radiance, tristimulus values, or
camera signals and CIELAB or CIELUV coordinates.
Similar transformations are performed during the calibra-
tion of both color-measurement and imaging systems.
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Uncertainty or noise in a detected or recorded color
signal can arise from many sources, e.g., detector dark
current, exposure shot noise, calibration variation, or vary-
ing operating conditions. If a physical model of the system
and its associated signal processing is available, the influ-
ence of various sources on system performance can be
understood for both color-measurement ' ~® and imaging ap-
plications.””'? In addition, statistical aspects of human vi-
sion can also be explicitly included in the analysis."> This
approach allows the comparison of design/technology
choices in terms of system performance requirements, e.g.,
color error or signal-to-noise ratio. We consider the case
of general stochastic error sources, which can be functions
of exposure level, wavelength, etc.

Measurements of systematic error are often used to
evaluate accuracy during system calibration. Methods of
correcting for systematic measurement error due to spec-
tral bandpass, wavelength scale, and linearity '*~'® have
been reported. From a statistical point of view this type
of error represents bias, since the mean signal is not equal
to the true value.

To address system precision we need to understand
the origin and propagation of signal uncertainty.'’~*° This
would, for example, allow the comparison of observed
performance in a secondary color-space with that limited
by measurement error, or image detection, in an original
signal-space. The magnitude of errors introduced by ap-
proximations to functional color-space transforma-
tions*"** could also be compared with intrinsic errors.

Several workers'™® have addressed error propagation
from instrument reading to chromaticity coordinates. In
addition, propagation of uncorrelated measurement errors
in the nonlinear colorimetric transformations from tristi-
mulus values to perceptual color spaces has also been
described.”®

In this article we extend the above analysis to include
the effect of correlation between the uncertainty in related
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sets of color signals. As Nimeroff has shown,’ the correla-
tion is needed when computing error ellipses for 2-dimen-
sional color-space projections, such as chromaticity coor-
dinates. In addition, this information can be important if
colorimetric measurements are used to derive statistical
color models of processes or mechanisms. If stochastic
errors are propagated through various color-signal trans-
formations, then their magnitude can be compared with
that attributable to the process or sample under study.

Our analysis is given in a functional and matrix-vector
notation, to aid in its broad application to color measure-
ment, calibration, and color-image processing. While this
approach is now common in color modeling,>° it is
rarely used in color-error propagation.'” Many previously
published reports on the subject can be seen as special
cases of the general approach taken in this article. The
results are applied to several specific common transforma-
tions from spectrophotometric colorimetry and CIELAB
color specification. In addition we show how stochastic
color errors influence the mean value of color-difference
measures, AE% and AE¥,.

ERROR PROPAGATION
Univariate Transformation

If a signal is subject to an error we can think of a
measurement as a random variable. For example, if a
signal value x is detected for a process or image whose
true value is K, we can represent the set of measurements
as

X = pe + e,

where e, is a zero-mean random variable with a probabil-
ity density function, corresponding variance, o, and
mean value, p,. If x is an unbiased measurement of the
physical process, then the mean value is equal to K. If
we transform the original signal,

y = f(x),

then y will also be a random variable. If f(x) and its
derivatives are continuous, the statistical moments of y
can be approximated in terms of the original moments,
s, o2, and £( x). This is done by expanding the function
in a Taylor series about the mean value, u,, and express-
ing the first and second moments of y in terms of those
of x. The mean value of y is given by '"'®

pe = ELf(O)] = f(p) + 5l fao?l, (1)

where E[ -] is the statistical expectation and

"o (‘)fZ(x)

v azx Ky
Equation (1) indicates that the expected value of f(x) is
equal to the function evaluated at its mean value, but with
the addition of a bias that is the product of the second
derivative of f and the variance of x. For many applica-
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tions the second, bias term is small compared to the first.
We will adopt this assumption except as noted.

An expression for the variance of y can be similarly
found. Following this approach'’~*’ it can be shown that

"2

oy =flrol+ f (E[(x — p)'T = od),  (2)

where [ is the first derivative of f with respect to x
evaluated at p,. If x is, or can be appoximated by, a
normal random variable, then E[(x — u.)*] = 3o+ and
Eq. (2) becomes

e

U%Ef;205+70,x- (3)

The usual expression for o3 includes only the first term
of the RHS of the previous Eqgs. (2) and (3),

o; = fifos. (4)

In most cases relevant to color-measurement and color-
image processing, this term is the dominant one, but there
may be mean values for which this is not a good approxi-
mation. We will assume Eq. (4) unless stated otherwise.
This shows that for a univariate transformation, the signal
variance is scaled by the square of the first derivative of
the function, evaluated at the mean value.

Multivariate Linear Transformation

A common color-signal transformation is a matrix op-
eration, e.g.,

y = Ax,

where a set of input signals {x, x,, ..., x,} is written
asx” = [x,x,* * -x,] and the output is y” = [y;¥,* * * ¥nl.
The superscript, 7, indicates matrix transpose, and A is
the (mxn) matrix of weights. If each member of the set
{x} is a random variable, the second-order moments can
be written as a covariance matrix;

O Oz 0 Oy
5= ||
Tal O nn
where o, = Ufl, and the covariance between x,; and x,

is oy,. If the set of signals {x} are statistically indepen-
dent, X, is diagonal. The resulting covariance matrix for
y. from multivariate statistics, '’ is given by

T, = AT AT (5)

Equation (5) can also be written as an equivalent set
of linear equations. For example, Wyszecki and Stiles
address such matrix transformations and their effect on
color-matching ellipsoids.
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Multivariate Nonlinear Transformation

When multivariate signals are transformed and com-
bined, we can express the resulting transformation of the
covariance matrix as a combination of the above two
cases. We start with a set of input signals with covariance
matrix, X,. Each of the signals is transformed,

o Xa)

> Xn)s (6)

yi = filx, xa, ..
o = fo(x1, X2, 0

where f may represent a compensation for detector re-
sponse, or a nonlinear transformation between color
spaces. Let the matrix derivative operator be

M O
ox;  Ox, ox,
(7

Jf(X)z 8x1 >
9 LA
| Ox, 0x, |

where each element of J,(, is evaluated at the mean,
(fs;s Hy> + -+ » Mx,). This notation is that of Sluban and
Nobbs,?* and this operator is the Jacobian matrix.”® The
transformation of the covariance matrix due to Eq. (6) is
given by "

Zy = Jioo Zd o (7

Equation (7) can also be written*

n 2 n—1 n
avhzz <%> o, +2 Y Y %%
CoaNog )7

T
jk
P2t kg1 0% Ox,

which is the form most often used. Note that the simpler
univariate and matrix results of Eqgs. (4) and (5) are
special cases of Eq. (7).

Many color-signal transformations can be seen as a
cascading of the above types of transformations. We now
demonstrate this by developing specific expressions for
error propagation from spectral reflectance data to tristi-
mulus values. This is followed by the transformation to
CIELAB coordinates. These are important and common
transformattens, but can also be prototypes for image
processing steps found in many electronic imaging sys-
tems.

SPECTROPHOTOMETRIC COLORIMETRY

A fundamental color transformation is that between in-
strument spectral measurement data and the correspond-
ing colorimetric coordinates. If one is using a spectropho-
tometer, this involves measuring the spectral reflectance
factor at several wavelengths over the visible range. These

282

are weighted with an illuminant spectral power distribu-
tion, and combined in the form of the three tristimulus
values. Often these data are then transformed into a per-
ceptual color space such as CIELAB or CIELUV. The
following analysis addresses noise propagation through
this signal-processing path.

Error in Tristimulus Values

The tristimulus values are calculated by multiplying
the measured sample spectral reflectance factor by a CIE
illuminant and color-matching function weighting at each
wavelength. A summation of the result yields the three
tristimulus values. For the first tristimulus value this is
expressed as

Jjmax
X = kAN Y s;5R,,
=1
where £; is the first CIE color-matching function, s is the
illtuminant spectral power distribution, AX is the wave-
length sampling interval, R is the sampled spectral re-
flectance factor, and k is a normalizing constant.

The calculation of the tristimulus values can be ex-

pressed in matrix notation,

t = kANM’Sr, (8)
where
X 5 0 11;1
t=|1 Y], S= 52 ,r= :2 ,
z 0 Sy R,

X ¥ %

Often Eq. (8) is implemented using ASTM weights?'
that combine the illuminant and color matching function
information,

t=M'r, (9)

where M now indicates the weight matrix for a specified
CIE illuminant.

The fact that the three color-matching functions overlap
at various wavelengths introduces correlation into the er-
ror associated with the tristimulus elements of t (Ref. 1).
If t is calculated as in Eq. (9), then the resulting covari-
ance matrix is given as in Eq. (5):

S =M'EM, (10)

where X, is the (n X n) spectral-reflectance covariance
matrix. If the CIE color-matching functions and ASTM
weights did not overlap, this result would revert to the
uncorrelated error case. Note that, since the covariance
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ASTM, 10-nm weights for CIE llluminant A, 2° ob-

matrix comprises the moments about the mean values of
X, Y, Z, a constant bias error in {7} has no effect on X,.

Uncorrelated, Equal-Variance Instrument Errors

If we assume uncorrelated instrument errors, we can
assess the effect of the overlapping color-matching func-
tions alone on colorimetric error correlation. In this case
the instrument error covariance matrix, X, is diagonal. To
identify correlation introduced by the overlapping color-
matching functions more easily, we consider the special
case of uncorrelated and equal instrument error whose
covariance matrix is

Z = ol (1)

where I is the diagonal identity matrix. This case could
be used to model simple dark current error, or that due
to quantization rounding. The resulting tristimulus-vector
covariance matrix, 2, is found by substituting Eq. (11)
into Eq. (10),

¥, = ociM'M. (12)

As an example, consider the case of the CIE illuminant
A for the 2° observer, whose weights are plotted in Fig. 1.
The tristimulus matrix that would result from uncorrelated
instrument spectral reflectance error is calculated® from
Eq. (12),

0.095 0.067 0.003
¥ = of| 0067 0.069 0.002 |,
0.003 0.002 0.015

where the diagonal elements represent the variance of the
error associated with the tristimulus values, X, Y, and Z.
The corresponding correlation matrix is

1 0.826 0.071
0.826 1 0.069
0.071 0.069 1

Rt=
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Thus, there is a correlation coefficient, r,, = 0.826 be-
tween X and Y values, due to the overlapping weights.

CIELAB Errors

CIELAB coordinates, L*, a*, and b*, are calculated
from the tristimulus values, and those of a white object
color stimulus® whose tristimulus values are X, Y,, Z,.
For example, L* is given by

L*¥ = 116f(Y) — 16, (13a)

where

Y 1/3
[y = <7> for Y/Y, > 0.008856

n

(13b)
Y 16
f(Y)=17187T—+—, forY/Y, = 0.008856.
Y, 116

This indicates that L* can be computed by first evaluating
the nonlinear function Eq. (13b) and then the linear oper-
ation Eq. (13a).

The variance of the error in f(Y) can be approximated
as

. (dFDY
Triyy = —dY Oy

[l

1 2
(73@@;”) oy for pylY, > 0.008856

<7.787>2 s
Ty
Y,

Here we assume that Y, is a constant, but if we are inter-
ested in errors between laboratories or over time, then
the measurement of the white object color stimulus can
be a significant source of stochastic error.® In addition,
the measured value of Y, can introduce a bias error into
all CIELAB values that are based on the measurement.

Equation (14) represents one element of the matrix
operation of Eq. (7):

Zrw = JroZd fos
where, for pyx, py, pz > 0.008856Y,,

(14)

Il

for py/Y, = 0.008856.

1 #;2/3K ;1/3 O 0
Jf(t) — g 0 #;2/3Y ;1/3 0
0 0 ,LLEZBZ;]/}

As stated previously, the error-propagation techniques
used here apply strictly only to continuous functions with
continuous derivatives. Clearly f(Y) and its derivative
functions are not continuous near Y = 0.008856, but eval-
uation of the function indicates that both f(Y ) and df (Y )/
dY are approximately continuous, to the limit imposed
by the four digits of the constant 903.3. The second deriv-
ative function is discontinuous and error propagation anal-
ysis that includes this function could include verification
of the error statistics in this region by direct simulation.
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The corresponding calculations of a* and b* have a
similar nonlinear first step and subsequent second step.
The transformation to CIELAB can be expressed in ma-
trix notation,

L* 0 116 0
a* | =] 500 -500 0
b* 0 200 =200
£(X) ~16
x| f(vy | + 0 (15)
f(Z) 0
or
c = Nf(t) + n,

where ¢ is the CIELAB vector, f(t) represents the three
univariate transformations, and N and n are the corre-
sponding matrix and vector from Eq. (15). The covari-
ance matrix for the error in the CIELAB values will be
given by

ZL*u*b* = NZf(()NT = NJf(t)ZtJ(T(t)NT' (16)

CIELAB Chroma and Hue

In addition to distances in L*, a*, b* space, visual
color differences can also be expressed in the rotated rect-
angular differences in lightness, chroma, and hue,
AL*, AC%,, AH¥ (Ref. 32). To express the covariance
description of errors in L*, a*, b* in terms of their trans-
formed statistics, L a,«ac«ap+, We first consider the trans-
formation to lightness, chroma, and hue angle, %,,. The
chroma is

CH = Va*? + b*?

and the hue angle,

*
hy, = tan'<2—> )
a*

We can again apply Eq. (7),

1 0 0

0 Hax Hp
J *Cophasy = Bca, ey »
0o — b = Hax

2, 2.
Heg Moy,

where pel, = Vpi- + pp+, and

—~ T
ZL *CopHuy = J. *Caphap 23 *a*h Jz *Caph

(17)

abr

The hue difference between two color samples is given
by
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(18)

Ah
AHY, = 2VCH, C3, sin( 2“”) ,

where C%, and C}, are the two chroma values and A#,,
is the hue-angle difference. To find the covariance matrix
for the color-difference values, AL*, AC¥,, AHZY, in-
volves only the additional transformation from Ah,, to
AH* ., We are interested in hue differences about the
mean, so the reference C%, = uc;, and C%, of Eq. (18)
is taken as the ensemble of chroma values. Assuming

small angles, Ah,,, then

AHZkh ~ AhuhV ,u’(f% C;k s

ab
SO

0 0
I 0
0

1
Joveymy,, =10
0 Hey,

*

N saciant, = Jarsac

*
ab’

an,- (19)

* * r *
AH 4 % *Afubhub‘] AL*ACpAH g -
The use of the above analysis will now be shown in a

computed example of colorimetric error propagation.

COMPUTED EXAMPLE FOR COLORIMETER/
CAMERA

Consider a tristimulus-filter colorimeter whose three spec-
tral sensitivities are the CIE color-matching functions.
The instrument, therefore, measures the sample tristimu-
lus values directly. Let us also assume that the signal
includes a random error whose rms value is 0.5% of full
scale, i.e., 0.005. This error is uncorrelated between the
X, Y, and Z signals. The variance of each signal is given
by (0.005)°, where the signal range is [0-1], or Z, =
2.5 X 107°L.

If we calculate the CIELAB coordinates from the mea-
sured data, the corresponding errors will be a function of
the (mean) signals as in Eq. (14). As an example, let
the true color tristimulus values be X/X, = 0.55, Y/Y, =
0.5, and Z/Z, = 0.05, corresponding to a strong orange
yellow. These values are on a [0-1] scale.

If we assume that the measurement errors are described
or approximated by normal probability distributions, then
the three-dimensional, 95% probability error ellipsoid is
shown in Fig. 2. This is derived from the eigenvectors
and eigenvalues of the covariance matrix, as is commonly
done in multivariate statistics.” The ellipsoid represents
a three-dimensional analog of the univariate 95% confi-
dence interval about the mean, for the population of mea-
surements { X, ¥, Z} whose variation is described by the
covariance matrix XZ,. The spherical shape is due to the
independent and equal-variance nature of the errors for
the three signals.

In applying Eq. (14b) for each tristimulus value,
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0.01

0.01

FIG. 2. Error ellipsoid (95%) for the measured tristimulus
values example.

f%(0.55) = 0496, f1(0.5) = 0.529,
f 2(0.05) = 2.46.

Using Eq. (16), the covariance matrix of the errors in
the CIELAB coordinates is

0.094 —0.406  0.162
Tpeanpe = 3291 —0.700 | ,
6.312

where the high value of o« is due to the high value of
the derivative, f 7(0.05), and large coefficients of third
row of matrix N. The corresponding correlation matrix
is

1 -0.729
RL*a wp ok — 1

0.211
—0.154
1

Figure 3 shows the 95% confidence ellipse for the L*,
a* parameters that results from the propagation of the
uncorrelated instrument error to CIELAB. The influence
of the relatively high o 2. value, compared to o; «, is seen
in the highly elliptical shape for this example. The three-
dimensional ellipsoid for the CIELAB errors is plotted in
Fig. 4.

The square roots of the diagonal elements of the covari-
ance matrix give the rms deviations for the CIELAB sig-
nals. These are listed in Table I. The common color-
difference metric, AE¥, (Ref. 32) is the Euclidian dis-
tance
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FIG. 3. The AL*-Aa* ellipse (95% confidence) for the ex-
ample.

AE% = VAL*? + Aa*? + Ab*2.

The expected value of AE?Y, can be approximated as
shown in Appendix I,

E[AE%] ~Voli. + 2. + 0.

2
g,

- (20)

b
8(ci«+ 0ii + 05"

5

FIG. 4. L* a*, b* error ellipsoid about the mean (95% con-
fidence) for the example.
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TABLE |. CIELAB values and rms error for the exam-
ple signal.

CIELAB coordinates Mean Standard deviation
L 76.07 0.31
ar 12.81 1.81
b* 85.06 2.51

where
+ (L) + (Gum=)?)

and was found to be equal to 2.79 for this computed
example.

Note that Eq. (20) can be interpreted as describing the
AEZ% bias due to variations in L*, a*, and b*. In the
absence of signal variation, X, «,«+ = 0, and, therefore,
AE% = (. This is consistent with taking the ‘true’ CIE-
LAB coordinate to be { <, tty=, tp+} for the zero-mean
error case considered in this example.

Following Eqgs. (17) and (19), the covariance matrix

for the AL*, AC¥,, AHE, error representation is

0.094 0.100 0.426
6.039 1.114
3.564

(21)

IIN *ACpAH Yy =

This results in the error ellipsoid shown in Fig. 5.

The rms AL*, AC%,, AHZ, deviations for these signals
are given in Table II. The values for each signal should
be interpreted in terms of the units of each. For example
C%, chroma, is in units of CIELAB distance projected
onto the a*-b* plane. Hue angle, h,, however, is in
degrees.

AEg;

Recently,* the CIE adopted the AE$, color-difference
measure, designed to overcome some limitations of
AE% . Specifically, the new measure discounts the visual
color difference as the chroma of the reference color in-
creases. This relationship can be seen from the expression,

AR = (ALY, (ACh) | (AHEY (22)
. k.S: keSc kSi )

where

SL = 1
Se =1+ 0.045C}%
Sy =1+ 0.015C%,

C}% is the chroma of the standard, or geometric mean,
and k; = ke = ky = 1 for a set of reference sample,
viewing, and illuminating conditions.
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ACab

FIG. 5. AL* AC},, AH}, error ellipsoid for the example
color. Note unequal axes scales.

We can interpret the calculation of AE$; as a scaling
of the AC} and AH}, coordinates, so that they are trans-
formed into a modified perceptual color space, followed
by a distance computation. In matrix notation the first
step 1s

AL*
ACH/Se
AH%EISy
1 0 0
=10 1/(1 + 0.045C%) 0
0 0 /(1 + 0.015C%,
AL*
x | ACE (23)
AHY,
TABLE . L*, Cs, AH3, values and rms error for the

example signal. The values of the fourth column have
been scaled to conform to the AEg, color-difference
measure.

Scaled
CIELAB Standard standard
coordinates Mean deviation dev.
L* 76.07 0.31 0.31
Ch 86.02 2.46 0.51
hiy 81.4° — —
AHz, — 1.89 0.82
AE%, 2.79 — —
AE3, 0.89 — —
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If we denote the (3 X 3) diagonal matrix of Eq. (23),
evaluated where C%, = puc:,, as P, then the covariance

matrix for the transformed AL*, AC%¥,, AH, color space
is

This is found to be
0.094 0.021 0.186
Xy ecwmiscrisy = 0.255 0.100 (25)
0.680

The square-root of the diagonal elements gives the rms
deviations, also listed in Table II.

Following the same steps as for the calculation of
E{AE%], in Eq. (20), E[AEZ] was found to be equal
to 0.885. As expected from Eq. (22), the weighting of
the variation in chroma and hue difference has been re-
duced. An equivalent error ellipsoid calculated from the
covariance matrix of Eq. (25) is given in Fig. 6, and
completes the analysis. Note that the figure is not only
smaller, but more spherical than Fig. 5.

Since the error-propagation analysis described in this
article is based on the first terms of the Taylor series
approximation to any nonlinear transformation, the re-
sulting statistics are necessarily approximations. Al-
though a general investigation of the conditions necessary
for accuracy of the analysis is beyond the scope of this
article, we did independently investigate the computed
example by simulation. This was based on the direct trans-
formation of a set of 2000 {X, Y, Z} coordinates to
CIELAB. The normally distributed input values, gener-
ated by random number generator, had mean values and
covariance matrix equal to those used in the computed
example. The resulting sample covariance matrix was

0.095 0.025 0.187
0.268 0.111
0.685

X *ScH*ISy —

This compares favorably with the calculated matrix of
Eg. (25), as does the computed sample mean, AE¥ =
0.898, with the previously calculated value of 0.885.

DETECTOR ERROR SPECIFICATION

The above computed example illustrates how the error
propagation analysis can be applied to color-signal trans-
formations, and CIELAB error statistics can be predicted
from the input signal, { X, Y, Z }, mean vector, and covar-
iance matrix. We can also use these techniques to propa-
gate errors from CIELAB (back) to tristimulus values or
camera signals, if the matrix operations and the nonlinear
transformations are invertible. This will now be outlined.

For a measurement system we are given an error budget
such that no more than a given average error, AE},, in
CIELAB is allowable due to stochastic error in the input
tristimulus-value signals. The calculations of AE, and
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Sc¢

FIG. 6. Error ellipsoid based on transformed AL*,AC}%,,
AH?, coordinates, consistent with the AE 3, color-difference
measure.

AE¥ cannot be inverted. We can choose, however, to
evaluate the propagation of CIELAB errors with a given
form of covariance matrix. In addition, due to the nonlin-
ear step in the transformation, the error propagation will
depend on the mean value of the signal to be evaluated,
as was the case for the transformation { X, Y, Z} — {L*,
a*, b*}. As an example, the same mean signal will be
used as for the previous case, and, for simplicity, we let
the acceptable errors have a mean E [AEX] = 0.5, and
assume independent errors in L*, a*, and b*. From Eq.
(20), setting the covariance terms to zero,

_ (E[AES])?

T ALAACSeAH pISe = 3 I=0.083I. (26)

As in Eq. (5),
* E—— =1 * * -nr
ZaL *AC,AH gy = P EAL*ACuh/ScAHah/SC[P 1"

where P is given in Eq. (23). The next steps are the
transformation from {AL*, AC%, AH%} to {AL*,
AC¥,, Ah,} and then to {L*, a*, b*}. Since the matri-
ces Jrecint» Joravw+, and J,, are easily inverted, we can
write the error covariance matrix for the input signals as

— g1 =1 -1 . N
Zt = ‘]f(l)JL*u*b*JL*Cabh*ZAL*ACH/,AHu,,
=1 -1 -1 T
X [JL*C“;,h*JL*a*h*Jf(t)] . (27)

For the example signal, the calculated tristimulus-value
covariance matrix is
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328 236 0.322
=107 221 0477
0.908

(28)

and the rms signal error of
ox = 0.0057, oy = 0.0047, o, = 0.0030.

Equation (28) represents the propagation of the covari-
ance matrix of Eq. (26) to an equivalent input colorime-
ter/camera signal matrix. This means that, for indepen-
dent CIELAB errors, to achieve an average AE & value
of 0.5, the source error covariance elements must be no
greater than those given in Eq. (28).

CONCLUSIONS

From the general analysis of error propagation, the first
two statistical moments of stochastic errors can be ana-
lyzed in many current color-spaces and through many
color-image processing transformations. In addition to the
magnitude of the signal variance, the propagation of the
covariance between sets of signals has been described.
The methods used have been implemented using matrix-
type operations, but there are several requirements for
their success. The errors to be analyzed must result from
continuous stochastic sources. If so, the expression for
the linear matrix transformation, Eq. (5), is exact. The
expressions for nonlinear transformations, however, are
based on truncated series approximations. The partial de-
rivatives included in these expressions should be continu-
ous. We note, however, as shown for the tristimulus val-
ues-CIELAB path, that approximately continuous trans-
formations can also be analyzed.

The accuracy of the linear approximations can be eval-
uated by examining the higher-order derivatives. For ex-
ample, the magnitude of the second term of the RHS of
Egs. (2) or (3) should be much less than the first,
f 1?03, in order to use the linear approximation of Egs.
(4) and (7). Since both f | and f 7, are functions of y,,
it is useful to identify values of the argument (s ) for which
the condition does not hold, e.g., f: = 0. If the first
derivative is small compared to the second, and the error
distribution is approximately Gaussian, then Eq. (3) can
be used. This form can also be used for error distributions
that are similar in shape to the normal, e.g., lognormal
and Laplacian. For other distributions, such as the uni-
form, chi-square, or exponential, Eq. (3) should be used.

By applying the error propagation techniques, variation
due to measurement precision can be compared with the
effects of experimental variables using error ellipses and
ellipsoids. These are based on the calculated or observed
covariance matrices and underlying probability density
functions, and require the analysis of covariance. We can
also address the inverse of many color-signal transforma-
tions of current interest. As demonstrated, a given toler-
ance of average AE¥, or AE¥ can be related to an equiva-
lent uncertainty in tristimulus values, other sets of de-
tected signals, or image pixel values.
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APPENDIX I: EXPECTED VALUE OF AE}

The expected value of AEY, is

E[AES] = E[VAL*? + Aa*? + Ab*2], (Al)

where AL* = L* — p, ., etc. Since the first and second
partial derivatives of the function AE%(L*, a*, b*) are
undefined when evaluated at L* = a* = b* = 0, a key
requirement of error propagation based on Taylor series
is violated. We can, however, approximate equation (A1)
in two steps and compare the result with that for a simple
univariate case. We include up to the fourth moment.
First let

p= L*2 4+ g*% + b*z’

where L*, a*, and b* now represent the zero-mean ran-
dom variables, AL*, Aa*, Ab*, with some covariance
matrix, X; «,+,+. The expected value of p is

Elpl = pp = 01+ + 0he + 0ps. (A2)
The variance is
0,2) = E[pz] — /L,Z,. (A3)
If we expand p? and take expectations,
E[p’] = E[L**] + E[a*’] + E[b*"]
+ 2[E[L*%a*?*] + E[L**b*7]
+ Ela*°b*?]]. (A4)

The terms of Eq. (A4) cannot be related to 2+, +,+ with-
out an assumption about the probability density function,
P(L*,a*,b*). If we can approximate this by a joint nor-
mal distribution, then

E[L*'] = 30},

(A5)
E[L*¥%a**] = 0}.00+ + 2(0ps) 0 7
Substituting Egs. (A5) and (A4) into (A3),
012, =2(0t + odi + b)) + A[(0Lwr)?
+ (o)’ + (uw=)’]. (AG)

Next we form the transformed variable,
g =1p.

Here we can expand the function in a series about the
mean value of p, which is not zero. Following this ap-
proach, the expected value is given by
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Elq(p)] = E[AES) ~Vol. + 0. + 0L

2
ag

— £ , (A7
8(0’%* + Ug* + 0'[2,*)3/2 ( )

where o is given by Eq. (A6).

Univariate Normally Distributed Errors

As stated above, Eq. (Al) does not have continuous
partial first derivatives when pr+ = p,» = p+ = 0. To
compare our approximation, Eq. (A7), with a known
result, consider the case of a normally distributed error
in only one variable, i.e., where o2. = ;. = 0. Equation
(A7) becomes

E[AE;F},] = O7SUL*

For this case, however, AE¥, is seen as merely the abso-
lute value of AL*. The expected vaiue of Eq. (Al) is
the mean absolute deviation given, for a normal random
variable,® by 0.800 .. So, for this univariate case, using
Eq. (A7) underestimates the mean of AE},. A less accu-
rate, but more conservative approximation is given by the
first term of Eq. (A7), resulting in E[AE%] = oy.«.
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