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Abstract

Recent work aimed at quantifying the statistical efficiency of diagnostic imaging systems has resulted
in the frequent use of the detective quantum efficiency (DQE) and noise equivalent quantum exposure
(NEQ). Estimation of these metrics requires the separate measurement of several imaging parameters.
An analysis is given which results in expressions for DQE and NEQ estimate errors in terms of component
Ineasurement error statistics.

Introduction

The efficiency with which image information is captured by an image detector is ofter. expressed in
terms of its detective quantum efficiency (DQE). The corresponding description of signal-to-noise ratio, for
quantum limited exposure applications, is the noise equivalent quantum exposure (NEQ). These metrics
were originally applied to photographic film!~3 and video cameras.? More recently they have been used to
quantify the performance of various medical imaging systems, including x-ray screen-film®®, ultrasound,
nuclear medicine’ and xeroradiography.®® The utility of this approach has been demonstrated both in
the development of physical models,!%!! and the comparison of various diagnostic imaging systems and
modalities.”12:13

The DQE is defined as the ratio of the output (D) and input exposure (Q) variances when they are
expressed in equivalent units via the system (mean signal) transfer characteristic,*

o2
DQE=-2 G2,
)
where G=dD/dQ. The NEQ is

NEQ = Q DQE,

where Q is the mean exposure. Since for the quantum input, 0ot =Q,

Q2
DQE(Q) = 15 G¢°(Q)-
@=2@ @
In general, both DQE and NEQ are also functions of spatial frequency (w). They can, therefore, be
expressed in terms of the system MTF (T') and Wiener, or noise power, spectrum (8):3

QIT(Q,w) Q)
S(Q,0) (1)

DQE(Q,w) =
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NEQ(Qw)= 2 T(bf?(,g’)wG)(Q)] . (2)

Since the sensitometric properties of photographic imaging systems are expressed in terms of a density-log
exposure function, equations (1) and (2) are usually written

[logioe T(Q,w) (Q)]?

DQE(Q,w) = 05(Q.w) (3)
0g10€ ) 2
WEQ(@,w) = e T el (1)

where 7(Q) = dD/dlog10Q.

Knowledge of measurement errors aids in the interpretation of results, particularly when making com-
parisons with model predictions.!® Estimation of DQE and NEQ require the separate measurement of
several parameters, including those describing signal transfer (v,T) and image noise (S) characteristics.
The results of these measurements are then combined as in equations (3) and (4) to give the DQE and NEQ
estimates.* Errors associated with each component measurement will, therefore, combine to determine
the accuracy and precision of the final estimates. A common statistical measure of the accuracy of an
estimate is its bias, defined as the expected value minus the true value

bpoE(Q,w) = E[DQE(Q,w)] - npge(Q,w), (5)

where DaE is the estimated DQE value, upgE is the true value, and E is the statistical expectation. The
variance (or its square root) is a measure of the precision of the estimate

0205(Q,w) = E[DQEXQ,w)] - ther(Q,w). (8)

The bias and variance combine to determine the root mean square (RMS) error

(ST

RMSpgr(@,w) = [rhor(@:w) + bhap(@,v)] ™

In this report, errors associated with DQE and NEQ estimates will be expressed in terms of the statistics
of the errors in the component measurements of v, MTF, etc. The error associated with any measure-
ment can result from several sources such as instrument calibration and noise, image nonuniformity, and
image noise. Results of recent efforts to reduce effective microdensitometer noise are reported in these
proceedings.!®17 Before the DQE and NEQ measurement errors are addressed, we briefly describe the
required component measurements and their associated sources of error. No explicit discussion of estimate
smoothing is included. However, smoothing techniques can be evaluated in terms of their effect on the
variance, bias, and RMS error of the resulting DQE and NEQ estimates. We restrict our attention to the
first and second statistical moments of the various errors.

Measurements

Sensitometric characteristics are evaluated by modulating either exposure time or intensity.1®1° Quanti-
tative comparison of several techniques applied to x-ray screen-film 20-22 jpdicate generally good agreement
of the density-log exposure characteristics despite such error sources as reciprocity law failure, spectral
matching of artificial and clinical sources, and scattering. The variation between the results of different
methods has been reported to be about 2-3%. It should be noted that these errors refer to measurements
of relative exposure. Absolute exposure measurement requires the calibration of the exposure source. A

* MTPF, Wiener spectra, etc. are estimated from physical measurements. For the purposes of this report, however, we will
refer to DQE and NEQ estimates based on measurements of Q, 7, T and S.
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calibrated ionization chamber is used to measure the x-ray exposures. The resultant milliroentgen data
are then expressed in terms of an estimated quantum fluence via x-ray spectrum data.?® Errors associated
with this procedure contribute to errors in the measurement of absolute sensitometry.

MTF evaluation usually requires scanning the image of either an edge,!® slit,2* or square-wave
target. The scanned data is expressed in terms of an inferred input exposure via the characteristic function.
Variation in this function naturally leads to errors in the line spread function (LSF) and MTF.?7 For density
values where the derivative of the characteristic curve is low (i.e. at the toe), estimation of input exposure
is less accurate. To reduce this error and avoid truncation of the LSF, multiple measurements can be made
with several peak exposure values.?8~30 Truncation of the line spread function must be avoided since this
leads to systematic MTF (bias) errors. Alternatively, pre-exposure can be used.3! In addition, systematic
errors can also be caused by misallignment of the measurement aperture 3 and aliasing.24:33

The reduction of stochastic errors in MTF measurements is often accomplished by averaging of several
measurement scans. In addition, fitting the MTF to smooth curves may be useful since the measured MTF
is then described by a small number of parameters. Empirical curve fitting can introduce bias errors but
useful results for screen-film MTFs have been reported.3*:3

The two-dimensional Wiener spectrum is usually represented as an isotropic function of a single spatial
frequency. This measurement requires the repeated sampling of a uniformly exposed image with a mea-
suring slit of appropriate length.3® Of the various methods available for estimating the one-dimensional
Wiener spectrum,3” those based on the periodogram are widely applied to diagnostic image noise.24:38
Other Wiener spectrum estimation methods have recently been described including a two-dimensional
periodogram,>® maximum entropy estimation of an autoregressive model,%° and optical autocorrelator.*!
Image nonuniformity or other artifacts introduce significant errors into the Wiener spectrum measurement,
particularly at low spatial frequencies. To reduce the positive bias errors associated with image nonuni-
formity, the original data is sometimes detrended *Z or otherwise filtered.12:37 Statistical tests of the mean
and variance can also be used to detect certain types of image nonuniformity.*?

The final step in estimating the Wiener spectrum is to express the function in terms of absolute diffuse
density. This requires characterizing the microdensitometer instrument (specular) density-diffuse density
relationship. The Wiener spectrum estimate is corrected via the square of the slope of this calibration
curve.* Errors associated with measurement of the slope of the calibration curve as low as 1.5% rms and
total Wiener spectrum errors of 10% have been reported.*®

25,26

DQE and NEQ estimation errors

DQE and NEQ are not measured directly but inferred from the results of several physical image measure-
ments. DQE and NEQ values are estimated via expressions (algorithms) such as equations (1) and (2) or
(3) and (4). We will consider them to be statistical parameters to be estimated, much like the mean or
autocovariance function. The DQE value can be estimated at exposure Q and spatial frequency w by
- logioe 4(Q) T(Q, w)]?
DGE(Q,u) = Lo 1R T(9,0) (®
Q5(Q,w)

where circumflex () indicates a measured value or an estimate based on measurements. Each measured
value has an associated error which we model as the sum of a constant bias and a zero-mean random
variable. For 4 this is written

7(Q) = 1(Q) + 54(Q) + A%(Q), (9)
where i indicates the ith measurement realization, u. is the true value, and b, is the bias given by
5,(Q) = E(3(Q)] - #+(Q)- (10)

The zero-mean error is Ay with variance ag(Q). The other measurements are expressed in the same way,
suppressing the arguments @ and w :

A

Ti = ur +br + AT,
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Qi = pg +bg +AQ; (11)
SA',' — HUs +bs + AS,'.
We will assume that the stochastic measurement error sources are independent. Therefore, the expectation
for the product of any combination of them is zero:

E|Ay AT) = E[AyAS] = E[AyAT AS)...=0

We start with the simplest case of unbiased measurements. For this case, bg, b,, etc. are zero. We

can expand the function DQE in a Taylor series about the true values and take expectations.*® Using the
results of Appendix 1, the expected value is

E[DQE] = ppqE + rDQE —+—_+—.“+-——} 12
R V7 ST A (12)

where

[logroe py pr)?
HQ ks

The bias of the DQE estimate is the second term of equation (12),

HDQE —

2 L2 2 9

0' o ol
blpor = ppoE 4 L+ L 4+ 24284 3
¢ VENME Tk uh Mk (13)

The same approach leads to the expression for the variance (Appendix I):

40 402 06 ol
obog = M s+t =t (- 14
DQE DQE { l‘l"y P'%‘ I‘ZQ p% ( )

The corresponding expressions for the bias and variance of the NEQ estimate are

02 UT 2
bingpg = BNEQ{ —3 + 3 + 5 (15)
“'1 ”T F‘s

402 40k ol
O'N = ”’NE —1 +——+ =57 16
B ¢ { AT (16)
For the special case where all measurement errors have zero mean with standard deviation an equal constant
fraction, K, of the true value, then from equations (14) and (16)

IDQE _ ioK , “MEQ -3k
HUDQE MNEQ

If the measurements used to estimate the DQE contain bias errors, as in equations (9) and (11), there will
be an additional bias in DQE. From Appendix II this bias, b2pgg, is given approximately by

2b 2b, b b
b2pQE =~ KDQE ot &
BT Hy HQ Hs

(17)

The corresponding expression for b2ngq 1s

2br _ bs } . (18)

b2 {2b + —
NEQ =~ UNE -
N ? MUT  Hs
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Figure 1: Sensitometry of computed example.

For the general case of biased stochastic errors, comparison of equations (13) and (17) to (15) and (18)
indicate that component measurement bias is a much more serious contributor to DQE (NEQ) bias than
measurement variation. The variance of the DQE and NEQ estimates based on biased measurements
remains unchanged from the unbiased result of equations (14) and (16). The above results show that the
moments of the measurements combine simply to determine bpgg and opgr when expressed as a fraction
of the true value, or coefficient of variation. It should be emphasized that this relative error will usually
vary with Q and w.

Computed example

The above results will now be used in a sample calculation of the errors associated with the DQE esti-
mate. The imaging system to be evaluated has a characteristic curve as given in Figure 1. The errors
associated with measurement of absolute exposure and «y are unbiased and proportional to the true values,
0g = 0.05 ug and 0., = 0.03 p,. The system MTF is given in figure 2. The measured MTF is subject to
unbiased stochastic errors (¢ = 0.02), independent of spatial frequency. The Wiener spectrum is shown
in figure 3 plotted versus log exposure and spatial frequency. We will assume a proportional stochastic
error, 0s = 0.08 u,, with a bias due to the measuring instrument and image nonuniformity as shown in
figure 4.

The resulting true DQE surface is shown in Figure 5. The standard deviation and bias of the DQE
estimate, o pgg and bpgg are plotted in Figures 6 and 7. The bias is negative due to the positive bias of the
measured Wiener spectrum [equation (17)]. The shape of the total RMS error, given in Figure 8, resembles
that of the true DQE, since most of the stochastic error sources are proportional to their respective true
values.
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Figure 3: Wiener spectrum of computed example.
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Figure 5: DQE surface of the example.
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Figure 7: Bias of DQE estimate.
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Figure 8: RMS error of the example DQE estimate.

DQE and NEQ are not measured directly, but estimated from the results of several image measurements.
The analysis presented allows the interpretation of measurement error statistics in terms of their combined
effect on the DQE and NEQ estimates. The unique noise characteristice of each instrument and data
processing method must be quantified. The expressions derived for the bias, variance, and RMS error
are simple functions of the coefficients of variation associated with the measured MTF, v, etc. In a
calculated example, practical levels of measurement errors are shown to result in significant DQE estimation
errors. Efforts to improve DQE and NEQ estimates, either by smoothing, instrumentation modifications,
or measurement data processing, can be quantified in terms of the resulting bias, variance, and RMS error.
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Appendices

I. Moments of a function of zero-mean random variables

We are given a function of two independent random variables, f(z,y), where the corresponding means
and variances are g, iz, 02, and 03. The mean values can be interpreted as the true values so, for example,
#; is the ith unbiased noisy measurement of p,. In the following expressions for the mean and variance of
f, we retain only up to the second-order moments of z and y. The results can be generalized and applied

to functions of more than two independent random variables. The ith observation of z is
& = po + Az, (19)

where Az is a zero-mean, wide-sense stationary random variable and p, is the true value. We expand f
in a Taylor series about p; and uy,

f(&9) = f(uz,uy) + 2 (@) + £y (8- my)
o {0 8= ) 2 £ = ) (3= ) + Sy (- 1)}

where
f! — af(:lt,y)
i 9z lpu,
and
. _ ()
i dzdy ey

Taking expectations and noting that = and y are independent,

BU0)] = f(umm) + 5 {flaos? + Ty} (20)
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The second term is the bias, bl;.
The variance of f can be expressed as

= E[f*] - E[f". (21)
First we express f? in terms of the series,

FH%,9) = e my) + (f1 (2 - )+ (F(5 - 1))

(fz(
[ - 2
+ 2 f(pzs 1) {f;(z — hz) + f;(g ~ ) + ﬂgfzﬂ

i3 = m)? } |

+f:::,y (2 — p2)(§ — my) + 2

Taking expectations,
. s 2 2 :
E[fz(‘”, 7)) = fz(“ml‘y) + f; ‘7:2 + fg,/ ”y2 + f(pz, 1y) [f;':”zz + f;';'y"yz J- (22)
Substituting equations (20) and (22) into (21),
2 __ g2 12 2
o= f; 05 +fyay. (23)

I1. Bias of a function of biased randomn variables

We are given the function, f(z, ), of two random variables (measurements) that are corrupted with a
bias error. The expected value of z is
E|2] = by + pq.

We define the bias of f(z,y) as in equation (5):

= Elf(2,9)] - f(pz, 1) (24)
As in Appendix I, we can can expand f about the point (us,uy). Taking expectations,
E[f(:i'; g)] = f(ﬂzyﬂy) + f;;bz + f,by
1 '
+ 5 [ Fhelos® +67) + 202, baby + Lt + 6,0} (25)

The bias, found by substituting equation (25) into (24), is the sum of two components: one due to the
variation of the measurements, b1y, and the other due to their bias, b2;. These are given by

by = b1y + b2y,
where 1
by =3 {fhos’ + A (26)
b2y = fiby + fyby + "b2+f"bb +f’“’”. (27)

2 2
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