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Analysis of image noise due to position errors

in laser writers

Peter D. Burns, Majid Rabbani, and Lawrence A. Ray

For raster-written images, the modulated laser exposing beam is scanned across the photosensitive material in
a line-by-line configuration. Image noise can be introduced by the writer directly, for example, by the
granularity of the photosensitive materials and indirectly, for example, by beam position errors. For analysis
of the effect of position errors they must first be related to their resultant exposure fluctuations. Here,
position errors are addressed via models of image writing that include several spot/pixel writing schemes.
Three types of image noise due to page-scan position error are examined. The effect of low-frequency
position errors is described. Exposure fluctuations due to broadband stochastic errors are then addressed.
For laser writers using a rotating polygon for beam deflection, the effect of stochastic facet-angle errors is
repeated down the image; this results in periodic exposure fluctuations and is the third type of image noise
analyzed. Expressions are given for the mean and variance of the exposure error in terms of the statistics of
the position error, writing spot profile, and raster sampling distance. The analytical models are then
compared with the results of an image simulation calculation. Inthis way, the exposure error fluctuations are
described by their noise power spectra as functions of spatial frequency. After consideration of the sensitom-
etry of the hardcopy recording materials, the exposure errors are then related to the corresponding output

density fluctuations.

l. Introduction

Most laser image writers scan the laser light source
across the photosensitive material in a line-by-line, or
raster, format, which is well suited to both continuous
tone and text imaging.! The exposing beam is de-
flected across the photosensitive material, while the
materials are moved incrementally in the orthogonal
direction, for each raster line. The beam intensity is
modulated at discrete intervals corresponding to the
intended optical density of each pixel in the final im-
age. Reference 1 gives more details of various deflec-
tion schemes. This process can be thought of as a
conversion of the image from a 1-D sampled digital
sequence to a 2-D continuous representation.

The design of a laser writer places limitations on this
conversion from discrete to continuous form that in-
troduce error or image noise. Consider, for example,
the case where the discrete signal is merely a sampled
version of an input optical image. The corresponding
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written image will contain fluctuations attributable to
the finite number of levels (bits) used for the discrete
sampled image. Other sources of image noise intro-
duced by the image writer are stochastic variations in
the laser beam intensity, granularity of the photosensi-
tive material, and beam position (or velocity) errors.
The first two noise sources can be analyzed by consid-
ering the signal and noise transfer during modulation
and image writing. Position errors, however, must
first be related to their resultant output exposure fluc-
tuations. Qur focus is on errors that occur in the slow
or page scan direction causing the line pitch to vary.
Since the written exposure image is dependent on
the repeated raster scanning of the laser, errors in the
line position degrade image quality. This occurs with
the introduction of 1-D banding and streak artifacts
which will be most evident in the constant or low-
contrast image areas. Often the design goal is to set
position error tolerance values so that no banding arti-
facts are visible under normal viewing conditions.
These tolerance levels vary due to several factors, e.g.,
pixel writing configuration, contrast of the recording
material, and nature of the position errors. Besten-
reiner et al.? have investigated the effect of periodic
line position errors on the reproduction of halftone and
continuous-tone recording processes. They found
that viewers could detect the presence of low-frequen-
cy periodic image fluctuations due to fractional posi-
tion errors of 1%. The sensitivity of human vision to
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Fig.1. (a) Effect of overlapping exposure beams corresponding toa
constant input signal. (b) Frequency domain representation of
above. The constant input is aliased at 1/Y, since the reconstruction
function is not bandlimited.

these artifacts, however, will strongly depend on the
spatial frequency of their components.?

Laser writers have several sources of position errors,
and rarely do current designs meet such stringent
tolerances. Values of 5-20% are typical. Kessler and
Shack* describe measurement of several sources for
laser printers using a polygon spinner for beam deflec-
tion. Scanning accuracy for galvanometer deflectors
has been addressed by Brosens.> Many applications
require a secondary correcting deflector to compensate
for systematic line-position errors.26 Although the
original uncompensated position errors may be known
or periodic, the residual errors after compensation will
often contain stochastic components.

To date, no general analysis of image noise due to
raster-line position errors is available. This work ad-
dresses the effect of periodic and stochastic position
errors and explicitly includes the effect of the modulat-
ed laser beam shape. The objective is to provide phys-
ical understanding of the effect on the image that can
be related to other imaging characteristics of the laser
printer, such as mean density, contrast, and MTF.

. Low-Frequency Position Errors

We start by assuming that we are printing a uniform
image area at some signal level with no position errors
as in Fig. 1(a). When images are sampled and recon-
structed, they are subject to both filtering (blurring)
and aliasing.”8 Rastering is an example of aliasing

where the zero-frequency mean signal is aliased at the
sampling frequency, as shown in Fig. 1(b). For a con-
stant input exposure I, the written output exposure is

C(x) = I + 2IR(1/Y) cos(27x/Y), 1)

where Y is the constant line-pitch distance, and R(f) is
the Fourier transform of the spot profile. Here we
assume that the rastering components at multiples of
the sampling frequency are negligible. Note that this
periodic fluctuation has a high spatial frequency, twice
the Nyquist frequency, and is usually not in a region of
high visual sensitivity. We address it here recognizing
that this component is present in a written image in the
absence of position errors. Fluctuations inimages due
to position errors will be considered separately from
fluctuations due to other causes.

For many systems the reconstruction function R
limits signal modulation and, therefore, is equal to the
MTF. However, since other transfer functions (fil-
ters) can be operating on the signal, we will not refer to
R as the system MTF. The output exposure is the
desired constant plus a raster cosine signal. The aver-
age exposure C can be written as a function of beam
velocity or line pitch:

C(ergs/cm®s) = J(ergs/cms®)
s(cm/s)
(2)
C(ergs/cm?s) = K(ergs/cms)
Y(cm)

where s is the fast scan beam velocity, and J, K are
constant scale factors dependent on the exposure
source and optics.

Consider the effect of low-amplitude low-frequency
(temporal and spatial) errors that cause the line pitch
to vary across the image. Now Y can be a random
variable. Combining Egs. (1) and (2),

o K 2K oo .
Cx) = v + v R(1/Y) cos(2nx/Y), 3)

where the tilde indicates arandom variable. Equation
(3) shows that both the mean exposure and periodic
raster ripple will be functions of the varying line pitch.
Ignoring the second term of Eq. (3), the variation in
exposure due to low-frequency stochastic position er-
ror can be expressed as

) 4)

where C and Y are now mean values. The same result
holds for low-frequency sinusoidal position error due
to, for example, stage flutter:

; (5

where AY is the sinusoidal position error. Equations
(4) and (5) show that the result of low-frequency ran-
dom or sinusoidal position errors is a corresponding
proportional error in output exposure.
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ill. Random Line-Position Errors

We now turn to the analysis of random line-position
errors. Here we assume that the errors in raster posi-
tions are independent, so structured errors such as
those generated from a rotating polygon or periodic
vibration are excluded. The natural shape of the laser
spot is a Gaussian profile; however, by using masks the
‘shape of the spot can be altered. The work of Lee,?
Ray,1% and Sullivan!! describes this process and its
motivation. The pyramid, or linear interpolator (LI),
profile is important because of both reduced signal
aliasing and no raster ripple component. Consequent-
ly, we consider the effect of a chosen beam shape on
exposure fluctuations because of the random position
€ITors.

Model

Our model as above is one-dimensional, since the
errors are assumed to be mislocations of the raster lines
and not individual pixels. For a constant digital sig-
nal, the ideal reconstructed exposure is

Clx) = 2 Sy(x), (6)
where S(x) is the spot profile in the slow scan direction.
The corrupted noisy exposure because of position er-
Tors is

Cooiey(®) = D" S{x +2), W)
where {z;} are independent identically distributed (iid)
random variables with zero mean.
The exposure error introduced by the position error
is given by the difference in Eqgs. (6) and (7):

v(x) = C(x) — C,pppey(x)
= [Six) — Si(x +2)]. ®
The function v(x) will be referred to as the error func-
tion. The error function will now be analyzed to deter-
mine the statistics of the error and image exposure
fluctuations that would be expected from typical real-
izations of such position errors. Our analysis will be
general in form but will focus on the case of Gaussian
and linear interpolator (triangular) beam profiles.
Let us assume that the laser writing device is unable
to maintain perfect (constant) raster spacing; then the
flat exposure level shown in Fig. 2(a), for a linear
interpolator spot, becomes more like the exposure of
Fig. 2(b). The error function that describes the image
exposure fluctuations due to position errors is shown in
Fig. 2(c). The image will appear as a field of darker
and lighter stripes. Our approach is to derive expres-
sions for the mean and variance of the exposure error
functions for both spot shapes. The derivations of the
results are in Appendix A.

Gaussian Profile

For images written with a Gaussian beam, the ideal
exposure will naturally contain a periodic raster ripple.
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Fig. 2. Written exposure for a constant input of a spot with the
linear-interpolator (triangular) shape (a) without position error, (b)
with error, (c) error exposure signal v.

Despite this, the Gaussian beam is used in most writing
devices. The error function of Eq. (8) does not include
this fluctuation, since it occurs in the absence of posi-
tionerrors. The Gaussian spot profile in the slow scan
direction for a raster position Y is given by

o (Y]
y

(For the remainder, i represents an index parameter,
and j denotes y—1.)

We assume that the signal to be written is a uniform
field of unit intensity and that the misplacement errors
z; are iid normal random variables with zero mean and
variance af. Theorems 1 and 2 (see Appendix A) es-
tablish the first- and second-order moments of the
error function v(x). The mean error at position x is
uy(x) = E[v(x)] =

S‘ _ hd _1 (x lY) R 10
2 (-5 0o

where g, is the (standard deviation) shape parameter
of the Gaussian spot, and ¢ is the variance of the
position-error probability density function (pdf).
Note that u,(x) is not stationary but is periodic with a
period equal to the raster width Y (Fig. 3). The follow-
ing heuristic argument might be helpful in explaining
the nonstationary behavior of the error. Consider the
output exposure at the raster position x = ;Y. The
major contribution to this output comes from the
Gaussian spot centered at that point. Shifting the
spot profile in either direction will result in a lower
output as the Guassian falls off sharply. An equiva-
lent exposure error at a nearby raster line will not
restore the exposure at this point as the slope of the tail
of the Gaussian will be nearly zero. This implies that
regardless of the direction of the random displace-
ment, the error function will most likely be negative.
The situation at midpoints between raster lines is re-
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Fig.3. Calculated mean exposure error fora Gaussian beam with o,
=0.44Y.

versed. This causes a bias in the error, which will be a
function of position.

The mean exposure error given by Eq. (10) can also
be expressed in terms of the Fourier transform of the
beam profile. Asshown in Appendix B, the first-order
approximation to the mean exposure error is

2
u(x) =K - % -R(1/Y) cos(2rx/Y), (11)
where K is a constant and R is the Fourier transform of
the spot profile. We note that this error is proportion-
al to the position-error variance, not the standard devi-
ation. As the spot profile is made narrower, R(f) be-
comes wider in spatial frequency, and so the value of
R(1/Y) is increased. Thus the amplitude of the mean
exposure fluctuations is increased. The nonstation-
ary mean of the exposure error for a Gaussian spot has
the effect of adding a periodic component at the raster
frequency (1/Y). The component has a small ampli-
tude and is opposite in sign to the raster ripple de-
scribed in Eq. (1).
We now address the variance of the error function.
From Theorem 2, this is given by

oX(x) = E{[v(x) — p, (0]}

- e @=iv?
(202 + U§)1/2 202+ 0'32,

j=—wo

o2 A2
- 2yzeXp _(36_2%} (12)
o, t o7 oyt o,

Figure 4 shows the standard deviation at interraster
positions. The standard deviation increases with in-
creasing o, as would be expected.

The width of the Gaussian profile has a marked
effect on the mean and variance of the error. A larger-
width Gaussian profile will have smaller error means
and variances. Figure 5 shows this relationship for
four Gaussian profiles. These results can be under-
stood by analyzing the error process as a function of
spatial frequency. A derivation for the noise power
spectrum of the exposure error is given in Appendix C.
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Fig.5. Calculated standard deviations of exposure error for various
Gaussian beam widths; position error has standard deviation ¢, =
0.01Y.

PS(p = [Ko.fRY, (13)

where K is a constant and R is the Fourier transform of
the spot profile. As the spot profile is increased, R(f)
increases resulting in a higher noise power spectrum.
The error exposure variance is increased, since it is
equal to the integral of the noise power spectrum. The
noise power spectrum will be discussed further in Sec.
IV along with the simulation results.

The natural conclusion is to design the laser writing
system with a wider Gaussian profile. This conclusion
must be balanced with the knowledge that the wider
Gaussian profile will diminish the modulation transfer
bandwidth of the laser writer. Infact, the higher MTF
of a system employing a narrow Gaussian beam par-
tially explains the increased sensitivity to raster errors.
Aside from this, all examples use a Gaussian profile
with the o, = 0.44 raster widths. This was selected
because it closely matches the reconstruction function
of the linear interpolator.!!
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Linear Interpolator

The LI refers to a pixel exposure that ideally is a
pyramid, and the slow scan profile at the raster posi-
tioniYis

Y (14)

1-lx= fi-1)Y<x<G+1Y,
Si(x) =
0 otherwise.

For many applications this spot profile will have ad-
vantages over a Gaussian beam. Ideally, the linear
interpolator will generate a constant exposure for a
constant input, since the sinc?[sinc(x) = sin(rx)/rx]
reconstruction function [i.e., the Fourier transform of
the linear interpolator is a sinc?(u)] has a value of zero
at the frequency 1/Y. If the Gaussian width is chosen
tomatch the LI reconstruction function at the Nyquist
frequency, wo = 1/2Y, the LI reconstruction function is
higher for frequencies below wy and lower for frequen-
cies above wgy. The implication of this is better resolu-
tion and reduced aliasing.10:11

For the case of the LI and iid position errors, the
mean value of the exposure is a constant equal to unity,
as shown in Theorem 3. This result applies for errors
drawn from any probability distribution. No analog
of Theorem 3 exists for the Gaussian spot, since it was
previously shown that the error function has a nonsta-
tionary mean. The immediate corollary is that the
error function for the linear interpolator has zero mean
at every point. This does not imply that there is no
error but that the error is centered about the ideal level
taking on both positive and negative values.

The exposure error variance for the LI profile is
found in Theorem 5, given by

®

Y—x
o2(x) = Z {j S2(x + a)ple; — iY)da;

Y—x

- [ j " St + appley - iY)dai]Z} : (15)
~-Y-x

Figure 6 shows the error signal variance as a function of
position for several position-error values. This vari-
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ance is nonstationary and periodic at interraster posi-
tions, as for the Gaussian spot.

IV. Position-Error Simulation

Analytical results have now been presented that de-
scribe the effect of random position errors on the writ-
ten exposure images. Expressions for the exposure
mean and variance as a function of position-error sta-
tistics and spot shape have been given. To verify these
results and investigate the special case of facet errors
for a rotating polygon, we undertook an image simula-
tion effort. Since errors to be addressed were only
occurring in the slow scan direction, a 1-D simulation
was performed by calculating the exposure for each
faster line written in the image. The position of each
raster line could then be subjected to a position-error
function or random error process with given parame-
ters. A 1-D exposure image of ten raster lines is simu-.
lated in this way. Many realizations are simulated by
repeating the calculations with different position er-
rors drawn from the same population. Figure 7 shows
a diagram of the simulation calculations.

Random Errors

Estimation of the noise power spectrum of the expo-
sure error is complicated because the mean (for the
Gaussian spot) and variance are nonstationary. This
is because the noise power spectrum amplitude of the
random variable v(x) is nonstationary and periodic in
the page-scan direction. We can, however, periodical-
ly sample the image so that the sampled random pro-
cess is wide-sense stationary. In addition, if we as-
sume that this sampled process is ergodic, the noise
power spectrum can be estimated conventionally. Ex-
amination of Figs. 3, 4, and 6 shows that both the mean
and variance functions are periodic with period equal
to Y.

The exposure error mean and variance, due to their
periodic nature, are equal at positions Y/4, 3Y/4, .. ..
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This allows us, under the previous assumptions, to
estimate the noise power spectrum for frequencies up
to 1/Y. The resulting spectrum estimate (Fig. 8)
agrees well with that derived in Appendix C and given
in Eq. (10) with K = 2. Note that this noise power
spectrum characterizes the exposure fluctuations at
specific positions with respect to the raster lines.
However, at locations Y/4 and 8Y/4 the variance takes
on its average value. Since the noise power spectrum
represents the spatial frequency decomposition of the
variance, the spectrum calculated for the error process
at these points represents a useful average spectrum.

The units of the error noise power spectrum are
different from those generally used for spectrum esti-
mation of 2-D noise processes. This is because, al-
though the written exposure image is two-dimensional,
it is stochastic in only one dimension since we are
addressing the effect of raster line misplacement and
not individual pixel misplacement. The spectrum
units are, therefore (exposure? X distance), instead of
(exposure? X distance?) for the Wiener spectrum and
in which exposure is energy deposited per unit area on
the photoreceptor. The image exposure fluctuations
considered are proportional to the underlying line po-
sition errors. The calculated spectra shown in Fig. 9is
for 1% position errors. The image noise corresponding
to more practical levels (5-20%) can, therefore, be
found by simple scaling of the spectra by the square of
the error relative to the 1% position error.

Periodic Facet-Position Errors

In the previous sections we have analyzed the effect
of position errors in terms of the characteristics of the
errors themselves, whether very low frequency, ran-
dom, or periodic. We have avoided modeling specific
physical causes, since these will vary with different
designs and technologies used. One important type of
periodic error is not included in the above analysis and
is best understood in the context of the primary cause,
polygon facet-angle variations. Exposure beams de-
flected by a rotating polygon are subject to errors in
both fast and slow scan directions.? As above, we will
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Fig.9. Simulated exposure error spectra for Gaussian and LI pro-

files, periodic errors, o, = 1%, Y = 0.1 mm, as might be generated by a
mirrored polygonal deflector.

analyze only errors that cause image noise in the slow
scan direction, i.e., pyramidal or facet-to-axis angle
errors. These cause variations in the raster pitch,
except that now they are repeated, since the polygon
rotates as the image is written. So for a polygon spin-
ner with, say, ten reflecting facets, the effect of a single
facet error is repeated every ten raster lines.

We start by assuming that each individual facet of a
spinner is subject to a small random pyramidal error.
As with the previous analysis, this will cause a line-
position error at the written image. The difference for
this case is that the output exposure is no longer a
(nonstationary) stochastic process but is a periodic
signal dependent on the facet errors of the particular
spinner used. Put another way, the periodic noise due
to a given spinner will be the result of a single realiza-
tion (or group of n realizations for an n-facet spinner)
of the underlying random facet-error process.

The working equations needed to calculate the expo-
sure are identical to those for the previous random-
error case:

v(x) = Z [Si(x) — S;(x + 2],

2 = Znais (16)

where n is the number of facets per polygon.

The resulting exposure fluctuations were calculated
via the simulation. The facet errors were assumed to
be random and normally distributed, so in the simula-
tion each raster line was shifted by an appropriate
position error for each facet of the spinner. Ten facets
per spinner were assumed. For a single polygon spin-
ner, ten errors were drawn, and the resulting exposure
fluctuations were computed. The spatial frequency
components were then identified by computing a dis-
crete Fourier transform. Each spinner has its unique
associated periodic image noise; however, the ensem-
ble of spinners was analyzed by repeating the above
calculations for many realizations of the facet errors.
The population of spinners (and facet errors) was
quantified by calculating the noise spectrum of the
error signal. Since the exposure error is periodic, ow-
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ing to rotation of the spinner down the image, the noise
spectrum is discrete with components at multiples of
the rotation frequency 1/nY for an n-facet spinner.
This was done for both Gaussian and linear interpola-
tor beam shapes, as shown in Fig. 9. Since the spectra
are discrete, the units are merely exposure. We plot
the peak-to-peak amplitude (four times the Fourier
-modulus) to be consistent with the previous analysis of
periodic position errors.2 The results of the simula-
tion compare with the results of the analytic approach
used for the case of random raster-position error. A
linear interpolator demonstrates a similar response to
periodic facet errors as the Gaussian profile. The
periodic peak-to-peak amplitude spectrum is shown
for 1% position errors. The amplitudes corresponding
to other values of position errors are obtained by sim-
ple proportional scaling of those in Fig. 9.

The agreement between the calculations of periodic
and random raster-position errors is not surprising, as
the periodic position errors locally are random errors.
Also, since the periodic and random errors form inde-
pendent classes of errors, the two classes of error can be
examined independently. The effect of the two types
of error can be easily put in terms of the density-error
index.

V. Density-Error Index

The preceding analysis can be related to the result-
ing optical density fluctuations in the written image.
For an integrated measure, the pointwise statistics of
the analysis can be averaged over a raster unit to give
an effective value of rms density noise. This averaging
is advantageous, as the nonstationary random process-
es can be replaced by stationary statistics. The densi-
ty-error index is

density error = y[log(C + Co,) — log(C — Cs,)]

1+g,
= log ) 17
1—0g¢

— 0y

where C is the exposure level, g, is the average stan-
dard deviation of exposure over a raster unit, and v is
the gradient of the photosensitive D — logE character-
istic curve at the mean exposure. Note that this is two
times the average rms density fluctuations and similar
to that used by Bestenreiner et al.2

For random errors this measure is clearly statistical,
as the errors may result in density variations exceeding
the index values. The measure does provide a useful
design aid. The calculation of the above measure
shows that the density errors, although nearly identi-
cal, are uniformly less for the Gaussianspot. Figure 10
shows the density-error index as a function of the
standard deviation of the raster error.

The importance of this is that, although the image
quality of a laser-writing system can be improved by
using a laser spot shape other than the normal Gauss-
ian, one does not incur substantially greater sensitivity
to raster position errors. Recall that the Gaussian
profile selected, o, = 0.44 raster units, is the profile
that best matched the MTF characteristics of the opti-
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respect to the intended raster locations. y = 1,2 and 3.

mal spot profile. As previously mentioned, a wider
Gaussian spot will have reduced average variance and
hence a lower density-error index. However, the writ-
ing scheme has reduced contrast and lower signal-
transfer capability.

We can also calculate the output density noise power
spectrum via the characteristic curve of the recording
medium:

PSp(f) = v*(logy4e)*PSg(f). (18)

This is based on the usual assumption of small expo-
sure variations about the mean exposure, which ap-
plies in our case of continuous-tone printing. Figures
11 and 12 show the density noise spectra for the ran-
dom- and facet-error cases for recording materials with
v = 1. The spectra values are proportional to both o,
and f, as can be seen from Eq. (B5). From Eq. (18) it is
seen that the spectra of the written image are propor-
tional to the square of the v of the recording material,
which will vary with mean exposure.

VI. Conclusions

Since a laser writer represents a final stage in an
imaging system, its requirements are usually described
by signal-transfer and noise properties. For example,
the requirements for the granularity of the recording
materials can be expressed in terms of an output
SNR!? or noise equivalent number of quanta.3 In
general, these metrics are most appropriate for the
description and specification of 2-D stochastic noise
degradation. For 1-D single-frequency periodic fluc-
tuations, results of sine-wave or square-wave visibility
threshold experiments are often used to set noise re-
quirements.

Current levels of position errors in laser writers lead
toimage banding fluctuations that are both visible and
unacceptable for some high-quality applications. Re-
duction of line position errors in laser printers often
requires increased complexity and cost. Itisintended
that the analysis presented here provides a tool for the
integration of this aspect of mechanical design into the
imaging performance requirements for hard copy dis-



8.0 T T T T

6.0 |- -

4.0 - .

Ll

Spectrum D2 ym

oy =0.44Y
20 .

0.0 1 1 i
0.0 20 4.0 6.0 8.0 10.0

cy/mm

Fig. 11. Simulated density error spectra for Gaussian and LI pro-
files, random errors, o, = 0.01Y, Y = 0.1 mm, exposed onto photo-
sensitive material with v = 1.

play. The image noise is described not only in terms of
the position error statistics but also the reconstruction
(interpolation) scheme. By expressing the stochastic
and periodic image artifacts in terms of spectral densi-
ty and spatial frequency, their effect can be under-
stood in terms of the image signal bandwidth and other
noise sources. This is analogous to the analysis of
aliasing in the context of the system MTF.

One-dimensional random and periodic image fluctu-
ations that result from the position errors addressed
here can be thought of as artifacts such as rastering.
For these types of image degradation, the most useful
approach is to require that the magnitude of the arti-
facts be below some practical visibility criterion.
These requirements are most stringent if the image to
be written is a constant field, as typical for parts of a
continuous-tone image.

The random polygon-facet errors result in periodic
image fluctuations of several frequencies at various

unknown phase angles. Nevertheless, the use of visi-

bility threshold curves (for single-frequency periodic
noise) seems apt, particularly at low spatial frequen-
cies. Our analysis of random position errors has iden-
tified 1-D nonstationary stochastic exposure fluctua-
tions. Since these are neither 2-D random nor single-
frequency periodic, metrics developed for these types
of noise must be applied with care. It is advisable, as
with other such artifacts, to augment the analysis with
simulation experiments. The 1-D random image
noise, however, can be described by an average 1-D
power spectral density and will appear as random
bands or stripes in the image. For components at low
spatial frequencies, these may appear similar to the 1-
D periodic noise and, therefore, be specified similarly.

It is our pleasure to acknowledge the numerous con-
tributions to the development of our ideas from col-
leagues in these Laboratories, especially R. Firth, D.
Haas, E. Muka, and J. Sullivan. We would also like to
acknowledge significant and timely suggestions and
advice from R. Shaw.
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Fig. 12. Simulated density error spectra for Gaussian and LI pro-
files, periodic errors, y = 1, ¢ = 0.01Y, Y = 0.1 mm.

Appendix A: Mathematical Derivations and Proofs

The following are the theorems and proofs referred
toin the body of this paper. Theorems 1 and 2 assume
the writing spot to be a Gaussian profile, whereas the
rest of the results assume a linear interpolator for the
writing pixel. The line-placement errors are assumed
to be independent and identically distributed. These
errors are referred to as random errors as opposed to
periodic errors. The notation used in the following is
E( ) = expected value operator,

03 = variance of the Gaussian writing spot in the
slow scan direction,

z; = random variable denoting the ith-raster line-
position error,

Y = intended raster line spacing.

In all cases the maximum value of any individual
pixel is assumed to be unity, and the input signal is
assumed constant and set to unity. These assump-
tions do not restrict the generality of the results.

THEOREM 1: If the raster line errors are iid with a
Gaussian probability density function having zero
mean and variance o2, the expected exposure error at
position x is given by

b — )2
u(x) = exp [- (LQ—?LL}
Ty

— V)2
% exp[— (x —i¥) ] (A1)

(05 + 03)1/2 2(02 + 03)

PROOQOF: By definition, the expected error at point x
is given by

Z E[S(x) — S;(x + )]

j=—o

(%)

@

D 15 — BIS;(x +2)I}

=~

where z; is the position error of raster linei. Thusitis
sufficient to determine the expected value of S;(x + z;).
By application of first principles,
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EIS,x +2)] = 1 © _(x—iY+z,»)2
T e, Le’“’ 202

%y exp[_(x—iY)Z]. (A2)

(af, + 02)1/2 2(65 + af)

The result immediately follows.
Expression (Al) is used extensively in calculation of
the variance of the exposure error.

THEOREM 2: If the raster line errors are iid with a
Gaussian probability density function having zero
mean and variance af, the variance of the exposure
error at a position x is given by

ad 4 (x ~iY)?
P y
= E ex
i . {(20? + a?,)l/z pl: 203 + 63 :|

[=—o

o2 a2
- £4 S exp| - (xz ng . (A3)
oy to; o, + a;

PROOF: By assumption, the errors at each raster
line are independent, so the exposure error at a point x
is the sum of independent random variables:

vi{x) = S;(x) — S(x + 2)).

Hence, the variance of the exposure error is the sum of
the variances of the random variables v;(x).1* Let
o?(x) be the variance of the random variable v;(x). By
definition,

of(x) = E[v}(x)] — uf(x)
= E{[S(x) — Si(x + z)]3 ~ u(x)

= Sf(x) — 28;(x)E[S;(x + z;)]
+ E[SHx + 2)] — 1é(x),

where p;(x) is the mean value of the random variable
vi(x) and is determined by a tedious but direct compu-
tation. The expected value of S;(x + z;) is Eq. (A2).
The expected value of S?(x +2)is

Ty expl — (x —iY)* .
262 + 05)1/2 2062 + af,

By combining the separate terms and performing some
algebraic manipulations, the resulting expression be-
comes

a(x) = %y exp| — (x = iV)*
v 202+ o§)1/2 202 + aﬁ

RN N C 20 B
o2+ a2 0§+J?

y z

The desired quantity then results by summing over the
individual components.

The remaining theorems assume the spot shape rep-
resents a linear interpolator. This is given by Eq. (14)
in the text and is repeated here:
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Y

N (PR .
Si(x)=[1 fC-1DY<x<(@+1)Y
0 otherwise.

THEOREM 3: If the raster-line positioning errors
are iid with a probability density function p(z), the
expected value of the exposure at any point for a con-
stant input is constant. Moreover the mean exposure
error is zero.

PROOF: By applying the definition of expectation
and the spot profile, the expected exposure can be
written as

expected exposure = Z E[S;(x + z))]

(==

®
©

= Z j S,(x + z,)p(z;)dz;.

j=—w

By assuming the sum is absolutely convergent and the
random variables z; are changed to iid, the order of the
summation can be rearranged.

Also, let w; = —iY — x. Therefore,

> Wiy w;, —2;
Z j 1+ v plz)dz;
+Iwi (1 wi—zi> (2)d
- p(z,)dz;
Wit1 Y '
Wiy w; —z;
= Z j 1+ v p(z)dz;
Wiy w; —z;
+ L, 1- v plz)dz;

@

=f plz)dz; = 1.

The expected exposure error is the difference in the
expected exposure with positioning errors and the ex-
posure without positioning errors. Since the exposure
without positioning errors is unity, the difference is
Zero.

COROLLARY 4: The expected value of the expo-
sure at a point x when the jth raster line is omitted is
given by

—-(G-1Y-x
1- ] S;(x + Np(ax.
-(+1)Y-x

PROOF: This immediately follows from Theorem
3.

THEOREM 5: If the raster-line positioning errors
are iid with a probability density function p(z), the
variance at any point is given by

Y-x
o2(x) = Z {f S2(x + a)pla; — iY)da;

Y-x

j=—o

Y-x 2
- U S(x + a)pla; — iY)dai] } .

-Y—x



PROOF: For a fixed raster position x, the individ-
ual position errors independently contribute to the
total exposure error. As in the proof of Theorem 2, it is
sufficient to add the variances of the random variables
to determine the variance of the exposure error. How-
ever, algebraically it is simpler to compute the variance
directly without immediately applying the indepen-
dence of the individual error terms:

Let v(x) = Z[si(x) - Si(x + 2],

then
oXx) = E[p*x)] — u¥(x)
= E[v*(x)],
where u(x) = mean exposure error = 0 (Theorem 3).

By expanding the expression and applying Theorem
3 to three of the resulting summations, and then by use
of Corollary 4, we obtain

E[v¥x)] =-1+E I:Z z Six +2)Sx + zj):l

i
=E I:Z S(x + zi){l
—({-1)Y—x
_ E[z Sitx + zi)] f Sitx + \)pOdA;
7 —(+1)Y—x

Y-

> f S:(x + aple; — iV)day
7 ~Y—x

Y-x
- f S(x + o)
~Y—x

—(-1)Y-x
X [J Si(x + )‘i)P(xi)dxi] plo; —iY)da,.
(+1)Y~x

By a change of variable, using the definition of the spot
profile and the property that the random variables are
iid, the result follows.

Appendix B: Mean Exposure Error

This Appendix provides an analytic derivation to
the spectral model of the exposure noise generated by
random positioning errors. The model is actually a
special case of the results of the analytic model, al-
though the model captures the most useful part of the
analysis. The analysis assumes the spot shape to be a
Gaussian profile. The case for the linear interpolator
can be handled similarly.

From Theorem 1 of Appendix A the mean of the
error is given by the expression

AN % ==iv® | .
OEDY {Sim e exp[_%% @]}
== ¥ z

Since p,(x) is a periodic function with period equal to
the spacing between adjacent raster lines (i.e., Y), it
can be expanded as a Fourier series of the form

(%) = ag + z a, cos (2—;1 x) , (B1)
=1

where
Y

_1[2
W7y |y

2

uy(x)dx, (B2)

Y
2 (3 2xl
a;= ?t! (%) cos <% x)dx. (B3)
2

It can be easily verified that ag = 0. To find a; we note
that

Y

2 J’E gy (x —iY)? (21rl )
a; = - —zx|d
=3[ +z [2(2 )] AP

Y
L2
*yly

2

=ay + Qo).

Since u(x) is an absolutely convergent series (with
probability 1), the terms may be rearranged in any
manner. In particular, the series may be broken into
two pieces, and the coefficients of the Fourier series
can be computed by individually integrating with re-
spect to each of the pieces and then adding the results.
Let the second part of the expression be given by the

series
@ Y
_2 2 (x —iY)? 2xl 1\,
ay = v y exp ——202 cos Tx x
. ! 2

=2 f ) ex 2 0! (Z—ﬂx d
Y. p _205 cos Y ) x,
where we have interchanged the order of the summa-
tion and the integration. The resulting summation of
finite integrals can be converted to a single integral

with the region of intergation over the entire line.
Indeed, the expression is simply

2\/%% —20?,l21r2
Y exp Y2 ’
where the latter result is derived using integral tables.
Similarly, ay; is found to be

2\/ﬂoy —27r212(a§ + 03)

v exp 7 ,

agy = (B4)

ay=— (B5)

Finally,

a=aytay

22 -9 2 212 —92 2!2 2
= ‘/jay exp( 7;2% )[1 - exp( 7;2 Uz):l’ (B6)

We define R(f) as the Fourier transform of the spot
S(x), and since a Gaussian spot of radius o, has a
Gaussian Fourier transform,

R() = \/ﬂay exp (—21r2zr§f2) .
Equation (B6) may be recast as

1 July 1986 / Vol. 25, No. 13 / APPLIED OPTICS 2167



9 1 27%%02
a;= ?R (?) 1—expf— 7 . (B7)

An approximation can be made by expanding the ex-
ponential in the expression and ignoring all terms be-
yond the second degree. By doing this, the approxi-

mation becomes
2
a,~ 47(203 (ZF) R (li/) . (B8)

This is the desired result, since from (B1) and (B8)
withl =1,

2
(%) = 4n? (0—;) %R (%,) cos (Z%x) .

Appendix C: Derivation of Amplitude Spectral Model

This Appendix derives the amplitude spectral mod-
el previously presented. The noise power spectral
model was given the form

PS(f) = [ka.fR(N) (€1

where k = constant,

o, = standard deviation of the position errors,

[ = spatial frequency, and
R = Fourier transform of the beam profile in the
page scan direction.

Assuming the spot is a sufficiently smooth function,
the value of the spot can be expressed by a Maclaurin
series as

spot(")(x)z"

. (€2)

spot(x + z) = Z
n=0

[spot™(x) is the nth derivative.]
function is given by

Hence the error

spot™(x)z"

. (c3)

V(x,2) = spot(x + 2) — spot(x) = Z
nx1

By a Fourier transformation of Eq. (C3) we obtain
M(f), the modulus

M) =Ry | S ERLEE

nz1

= R(AH[2(1 — cos(2xfz)]2
~|2fzR(f)| . (C4)

[Equivalently, we could have performed the approxi-
mation in Eq. (C3) by ignoring all but the first term of
the expression.]

Assuming the position error z is a random variable
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with a Gaussian distribution, the expected value of Eq.
(C4)is

E[M(f)] = 2o fR(f). (C5)

The power spectrum PS(f) takes the form of the square
of M(f), which is the desired result.

The value of the constant in Eq. (C5) is k = V2,
whereas the estimated value found by the simulation
was k = 2. This is a reasonable agreement, if we
consider the approximations used in Eq. (C4) and the
errors from the qualitative method used in the body of
the text.
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