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We generally characterize random image noise by the Wiener
spectrum. Most raster written images, however, also contain
one-dimensional periodic fluctuations due to the.reconstruction
of the 1image from discrete raster 1lines. The Wiener spectrum
measurement is corrupted by these periodic noise components and
results cannot be interpreted in terms of density fluctuations.
If the Wiener spectrum estimate can be interpreted as a function
of the periodic noise, it can be used to measure, for example,
rastering and banding.

When images are sampled and reconstructed they are subject to two
types of aliasing <1>. This can occur when either the original
image or the reconstruction function is not bandlimited. 1In the
first case signal components at higher frequencies are aliased at
lower frequencies when the image is sampled. The second type of
aliasing, of concern here, occurs when low frequency components
of the sampled signal are aliased at higher frequencies during
interpolation. Rastering is an example of this second form of
aliasing where the 'zero frequency' mean signal is aliased at the
sampling frequency, 1/Y¥, where Y is the raster spacing. The
output exposure image is the desired constant plus a cosine
signal. During raster scanning and printing periodic image noise
can also be introduced by such sources as beam power fluctuations
or line position errors <2>.

IMAGE NOISE MEASUREMENT

The one-dimensional Wiener spectrum can be measured in several
ways; however, we will discuss the direct estimate via the block
ensemble method <3,4>. To estimate the Wiener spectrum, the
density trace is divided into several blocks and the discrete
Fourier transform of each block is computed. The square of the
modulus is then averaged at each frequency for all blocks. The
estimate calculation is

- LAx | N -ij2mn/N |2
WS(j) = —<| Z D(n) e >
N n=1
where < > is the ensemble average and | | indicates the modulus

of a complex number. The measuring slit length is L, Ax is the
sampling distance (in either x or y direction), and N is the
block length. Note that in order to estimate the Wiener spectrum
the mean density value must be accounted for. 1If this is not,
done, the zero frequency estimate has a positive bias of LAxND
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(see ref. 4 for details), where D is the mean optical density.
Here we are neglecting the effects of the finite block or
'window', which implies a relatively £flat Wiener spectrum or a
long block length.

Now consider the Wiener spectrum measurement of a random process
that contains an additional periodic component. If there is a
one-dimensional sinusoidal signal present in the data, this
corrupts the Wiener spectrum estimate. Given an additional
signal

A cos(2nyf) ,
this results in a positive bias

2
N LAx A

4

at the frequency f. Thus the amplitude of the Wiener spectrum
estimate at the frequency f is the estimate of the random process
plus a term which is a function not only of the - sinusoidal
amplitude but also L, Ax, and N. What this means 1is that if we
choose a different value of, say, N, the block (FFT) length, we
change the estimate at f. This does not happen for a purely
random noise signal, since WS converges to the true spectrum for
large N.

The above bias term of the Wiener spectrum estimate occurs because
periodic signals are not described by the power density spectrum
(Wiener spectrum) in the same way as random signals. This is due
to the discontinuous nature of their Fourier transform <5>. The
measured spectrum is the summation of two components

2
—~ L N AxX A
WS{(f) = Ws (f) + ————m .
r 4

In many cases the Wiener spectrum estimate will be dominated by
the second term since LAxXN is often > 10% The amplitude, A, is
given by
_ 1/2
4 WS(f)
A=| — .
L Ax N ~

In those cases when the true (random) Wiener spectrum, W ‘(£), is
on the order of (L AxN)/4, it can be estimated from asured
values close to f and subtracted:

WS = WS(f) - WS (f)
P r

SO

140

SPSE — Advances in Non-Impact Printing Technologies, 1984



~ 1/2
4 WSp

L Ax N

COMPUTED EXAMPLE

The measured Wiener spectrum from a commercial laser printer
image written on silver halide film at a mean density of 1.37 is
shown in Figure 1. The measurement made in the slow scan
direction shows a rastering component at 10 cy/mm, corresponding
to the raster spacing of 0.1 mm. At this frequency the measured
value of 3.71 x 10° Dlpn3 is much larger than the random
spectrum, so we use eqg. 1 to find the amplitude. The measurement
parameters were:

aperture length 12.15 mm

0.02 mm

sampling interval
block (FFT) length = 256 points

The calculated density amplitude is 0.015, giving a peak-to-peak
value of 0.031,

The raster ripple was measured independently, using a sampling
aperture of 0.59 x 0.0l mm and a sampling distance of 2 am.
Several scans were averaged to synthesize a long aperture to
reduce the effects of the random image noise. From these data a
direct estimate of the peak=-to-peak density fluctuations was
0.030. This can be ' considered excellent agreement, since the
measurements were made on approximately but not exactly the same
image area.
CONCLUSIONS ;

The Wiener spectrum can be used directly to measure random image
noise and also indirectly to measure periodic noise. The
measurement can be related to periodic rastering and banding only
after the measuring aperture length, scan length and sampling
interval are considered. We have addressed the case of a process
which is the sum of random and periodic components. A sample
calculation of rastering via this method agreed with a direct
measurement to within 3.3%. Direct measurement of small signal
periodic components in random noise is usually more tedious than
the Wiener spectrum unless a scanning aperture several
millimeters long is wused. Although periodic image noise can be
measured via the Wiener spectrum, it should be interpreted and
specified separately from random noise. This is especially true
for one-dimensional signals that have been considered here.
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Figure 1, Measured Wiener spectrum for laser printer image.
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