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Wiener Spectrum Estimation at Zero
Frequency via Direct Digital Computation

P. D. Burns* and B. M. Levine’

Abstract

Previous methods for Wiener spectrum estimation have not accounted for

the unknown average density of most imaging systems. As a result, estimates of the zero
frequency value are unavailable or are measured separately. Here we describe a method
that uses short data sequences to derive estimates of the entire Wiener spectrum, includ-
ing the zero frequency value. The estimates approach the true Wiener spectrum as the
number of data sequences is increased. Computer simulation results are shown to be con-
sistent with the analysis. In addition, the effect of image density nonuniformity (due to, for
example, development variation) on the Wiener spectrum estimates is addressed. Two
statistical tests for the detection of density nonuniformity are described.
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Introduction

The Wiener spectrum has for some time been used to de-
scribe image noise, and several reviews of the literature are
available.l-2 Since the Wiener spectrum is the Fourier de-
composition of optical density fluctuations, it is a statistical
description of image noise. The task of measuring the Wiener
spectrum is one of statistical estimation, what is generally
called spectral or spectrum estimation.

Spectrum estimation has been studied in the context of zero
mean, or known mean random processes.? However, imaging
systems generally involve a nonzero and unknown mean value.
The application of the usual Wiener spectrum estimation
methods in this case results in no estimate at zero spatial
frequency. An equivalent problem occurs when estimating the
autocovariance function.*€¢ The very low frequency (zero
frequency) Wiener spectrum value can be calculated from
separate measurements made with a large sampling aperture.
The term “zero frequency” estimate here refers to an estimate
representing the Wiener spectrum value in a spatial frequency
range close to zero. The Wiener spectrum value at zero fre-
quency represents the integral of the autocovariance function,
by transform properties.

Our purpose here is to investigate estimates of the zero
frequency Wiener spectrum that can be calculated when the
entire one-dimensional spectrum is measured. The procedure
is a modification of a direct digital method using short data
sequences.” These estimates are shown, under certain condi-
tions, to be equivalent to the large aperture granularity
measurement.

To evaluate the utility of the estimates, the form of the bias
error is obtained by consideration of the expected values of
the estimates. A computer simulation experiment shows re-
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sults consistent with the bias analysis and also the form of the
variance of the estimates. The analysis and simulation results
would not strictly apply to images that are not uniformly ex-
posed and developed. To detect density nonuniformity, two
statistical tests are described that can be applied when using
the above Wiener spectrum measurement procedure.

Wiener Spectrum Estimation

For isotropic noise processes, the two-dimensional autoco-
variance function (acf) and Wiener spectrum are sufficiently
represented as functions of single variables. The one-dimen-
sional acf is defined as?

v() = LAXE{[D(n) — ui[D(n + 1) — u]}

where E|[-] is the statistical expectation, and y is the mean of
D{(n), image density fluctuations. The measurement slit length
is L and the sampling distance is AX. The autocorrelation
function is

R(l) = LAX E{D(n)D(n + 1)}

and
y(1) = R(l) — p?

The Wiener spectrum will be defined as the Fourier transform
of the acf,
N
W(@) = lim LAX 3 y(k)e i2wk/N (6))
N—w k=_N

for a discretely sampled process, where | = /—1. The index
J corresponds to the spatial frequency index j/NAX. Each
value of the discrete function W represents the Wiener
spectrum within the bandwith determined by the spatial
frequency sampling. The zero frequency Wiener spectrum
value, therefore, describes the spectrum over the interval
(0,1/NAX).

The noise process whose Wiener spectrum is to be estimated
is assumed to be ergodic? and to have zero covariance beyond
a distance NAX. The first and second statistical moments are,
therefore, constant and can be written
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Figure 1. The block averaging method for Wiener spectrum estimation.

E[Dk)]=p
Cov[D(n), D(n + k)] = y(k)] for all & (2)
v(k) =0 forallk = N,

where €ov[+] is the covariance function.

To estimate the Wiener spectrum,® the density data trace,
D(n), is divided into several short sequences (blocks) and the
discrete Fourier transform of each block is computed as shown
in Fig. 1. The square of the modulus of the Fourier transform
is the estimator of the Wiener spectrum. The Fourier trans-
form is calculated for each data block and the squared moduli
are averaged at each spatial frequency to reduce the variance
of the estimate. The calculation is given by

= LAX M

MO =701 E |
where M is the number of blocks and |-| indicates the modulus
of a complex number.

Most imaging systems have nonzero mean density levels;
hence, some estimate of the mean must be subtracted from
the data. If the sample mean is subtracted from each data
block before the Fourier transform is computed, the Wiener
spectrum estimate at zero frequency is necessarily zero. This
is because the sum of the deviations from the sample mean is
identically zero, and there is no zero frequency estimate
available in this case. From this it might be inferred that it is
not possible to obtain a zero frequency Wiener spectrum es-
timate via direct calculation. However, if the estimate of the
mean that is subtracted from each data point is the sample
mean for the entire data trace, the above procedure does give
a zero frequency Wiener spectrum estimate, which we will
show.

If no account is taken of the mean value of the density
fluctuations, the estimate W (j), which is a random variable,
has an expected value (see the appendix),

Z D(n, m)e—l27rjn/N (3)

E[W.()] = LAX[ y(k)

= n_ 1)
X ( - ,—]IfTI) e~i2mjk/N + §(jINp2[ (4)

where 6(j) is the Dirac delta function. The term (1 — |k|/N)
is due to the finite data block length and is referred to as the
lag window. The use of various other windows!? will not be
addressed; however, the estimation procedure is valid for all
common windows (but the above term will differ for each). As
the block length, N, increases, the first term of the RHS
(right-hand side) of Eq. (4) approaches that of Eq. (1), if one
notes the properties of Egs. (2). The second term of the RHS
of Eq. (4) is the positive bias due to the nonzero mean value,
u, and only effects the estimate for i = 0.

The estimate W1(0) could be corrected by subtracting
LAxNu?, but one rarely has a priori knowledge of u. In its
place, the average of all data points in the entire trace, D, can
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Figure 2. Example of Wiener spectrum estimate, WSs(u), based on actual
measured density data.

be substituted. This gives

Wa(0) = LAX[M 1(2 D(nm))] LAXND?

= W1(0) - LAXND? (5)
where
D=_— Z D(k) (6)
The expected value of Wz(()) can be shown to be (see the Ap-
pendix)
N-1 lkl
E[Wy0)] =LAX| ¥ ~v(k){1—
k-~(N=-1) N
1 N-1 |k| )]
-= k 7
M aeirn)" ’( 7y

The first term of the RHS of Eq. (7) is identical to that of Eq.
(4) for a zero mean random process. The second term of Eq.
(7) is a bias that can be made arbitrarily small by increasing
the number of data blocks. Thus W3(0) would yield a value
that approaches the true zero frequency Wiener spectrum. A
practical drawback of this estimate is that subtraction of a
term of large magnitude may lead to computer round-off er-
rors unless double precision arithmetic is used.

An alternative correction for the average density, mere
amenable to single precision arithmetic, is one that corrects
each data point by subtracting D from all the data points,
before computing the discrete Fourier transform. This esti-
mator, W3(j), is given by

Wa() =522 £ 1 & DGm) -

The expected value of W3(0) is identical to that of WQ(O) given
in Eq. (7), as shown in the Appendix.
As an example of this Wiener spectrum measurement

2
D)e—i2min/N (8)

method, Fig. 2 shows an estimate, WS3(u), based on actual
measured data. The aperture used was 25 um X 1.0 mm with
a sampling distance of 25 um. The trace length was 2000 data
points and the calculation was based on 40 blocks of 50 density
readings per block.

Approximate Bias of Zero Frequency Estimates

The bias of the Wiener spectrum arises from two sources as
shown by Eq. (7). One is the finite data block length and the
other is the presence of the unknown mean, D. The term (1
— |k|/N) of Egs. (4) and (7) corresponds to the convolution
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of the Wiener spectrum with a spectral window.® This in-
troduces a bias into the spectrum estimate at all frequencies,
except for a white noise (constant spectrum) process. This bias
can be reduced by increasing the number of data points in
each block, N, but remains for all estimates based on a finite
data record.

The estimate at zero frequency contains an additional bias
given in Eq. (7) by

LAX nN=1 |k|)
M ez )( MN

To determine the approximate magnitude of this “zero fre-
quency” bias, some simplifying assumptions are made.!l We
assume that (k) = 0 for k much less than N, which says that
the data block length is large compared to the correlation
length. Under this assumption Eq. (7) becomes

ol

The zero frequency Wiener spectrum estimate is negatively
biased (i.e., less than its true value) by a factor of approxi-
mately 1/M. This suggests an approximate bias correction
given by

E[W23 0)] ~ LAX I

W35(0) = W2,3(0) (10)

M-1
In practice, however, this zero frequency bias is small because
M is usually large (50 or more), in order to reduce the variance
of the estimates of the entire Wiener spectrum.

Comparison with Ac3

The low frequency Wiener spectrum can also be estimated
from independent data recorded with a large sampling aper-
ture. The noise parameter estimate

W) = Aa%

= - D)2 1)
M mzl (
approaches the true Wiener spectrum, W(0), for a large ap-
erture and a large value of M.12
To investigate the relationship between W2 3(0) and W(O),
consider Eq. (8), which can be written

2
N nZl (D(n,m) — )
The summation over n and the division by N computes the
average of the optical density readings within each data block.
If the fluctuations are small compared to the mean density,
this is approximately equivalent to single, large aperture
density measurements. Under this assumption, Eq. (12) is
seen as computing the sample variance from M data points.
The effective aperture, corresponding to the scanning and
aperture, A, is LAXN and, therefore,

W3(0) = W(0)

for small fluctuations and where the correlation distance is
much less than NAX. Thus the large aperture measurement
is identically equivalent to the zero frequency estimate, W3(0),
with a sample size equal to the number of data blocks.

W3(0) = LAXN [— ( (12)
m=1

Computed Example

To illustrate the use of the Wiener spectrum estimation
method, W3 was calculated in a computer simulation experi-
ment as shown in Fig. 3. Using a random number generator,
a Gaussian random process (sequence) was generated with a
mean density value of 0.5. This simulated density trace was
then Fourier transformed via the F.F.T. and multiplied by a

SIMULATION EXPERIMENT

RANDOM WS;(0)
NUMBER —>  FILTER —> W\S;m)
GENERATOR SGv\sJ(o)

Figure 3. The computer simulation experiment to compute the Wiener spectrum
estimate, WS;(u).

transfer function so as to have a known Wiener spectrum,

W) = — (13)

(3]

where B is a constant. The filtered data were then inverse
transformed to give the simulated random density trace whose
Wiener spectrum was to be estimated.

To conform to typical electrophotographic image mea-
surement conditions, a sampling distance, AX, of 25 um and
a sampling aperture of 25 um X 1.0 mm were assumed. For this
sampling distance, the Wiener spectrum can be estimated over
the frequency range 0-20 mm~1.13 A block length of N = 50
density data points was used, giving spectrum estimates at
increments of 0.8 mm~1, The Wiener spectrum estimate, W,
was calculated using various numbers of data blocks, M. For
each value of M,W3 was calculated twenty times from dif-
ferent simulated density traces. The bias and standard de-
viation of the Wiener spectrum estimates at each frequency
were then calculated from the twenty values.

The results for the low frequency estimate are given in
Table I. As the number of data blocks per estimate is in-
creased, the mean value of W3(0) approaches the true spec-
trum value indicating the reduction in bias predicted by Eq.
(7). Using the bias correction approximation of Eq. (10), a
closer agreement with the true Wiener spectrum was obtained
as shown in the third column.

Although the standard deviation of the zero frequency es-
timates has not been explicitly derived, it was estimated in the
simulation experiment. Column 4 of Table I gives the calcu-
lated coefficient of variation (c.v.), which is the standard de-
viation divided by the estimate mean. We compare this with
the error in the large aperture estimate W(0). The c.v. of W(0)

is given by
C_\/L
o M-1

under the assumption of a normal distribution where the
random variable (M — 1) s2/02 is distributed as x2 with M —
1 degrees of freedom.!* Comparing columns 4 and 5 shows
closze agreement and supports the analogy between W4(0) and
Ag D-

Detection of Image Nonuniformity

The Wiener spectrum estimates and analysis given assume
uniform density images whose microdensitometric fluctua-
tions are statistically stationary.® This may not be true if ex-
posure or development vary over the sample image. However,
depending on the degree of nonuniformity, a useful estimate
can still be obtained.

Wiener spectrum estimation in the presence of nonuni-
formities (nonstationarity) has been approached in several
ways, including the use of special-purpose hardware,!5 trend
removal,>16 and filtering of the data.l” Curve fitting can
successfully remove certain types of nonuniformities prior to
calculation of the estimate. Routine spatial filtering of the
data, however, often biases the estimate—whether or not the
image is nonuniform.

An alternative approach is to first detect the presence of
image nonuniformity before applying any corrective tech-
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TABLE 1. Results of Computer Simulation Experiment?

Number of . Estimated standard
blocks per W3(0) Bias corrected deviation, or co-
estimate, mean, mean — W3(0), efficient of variation,
2
M m2D? m2D? m2D?2 —_—
M M I8 M—1
10 0.90 1.00 0.428 0.417
20 0.90 0.95 0.334 0.324
40 0.98 1.01 0.279 0.226
60 0.99 1.01 0.173 0.184
80 0.98 1.00 0.149 0.159

ahMean and standard deviation are based on 20 Wiener spectrum estimates,
W3(0). The data sequence {(block) length, N = 50 points, true W(0) = 1.0 um?D?
and D = 0.5.

niques. To this end, two nonparametric statistical tests are
now described that detect a changing mean or variance over
the image. After the image is sampled, the mean and variance
of the optical density data in each block are estimated via the
usual calculations. Both a sign and run test!® are then applied
to the sets of block sample means and variances to detect
image nonuniformity.

Sign Test

This test can be applied to the sets of block sample means or
block variances. Given the average of the set of data (block
means or variances values) stationarity implies that half of
the values would be above the mean of the set and half below.
For a set of M blocks, assuming a binomial distribution, one
would expect the number of set values above the mean to be
M/2 with a variance of M2/4. If a is the actual number of block
values above the mean, the statistic

(a - M/2)—1/2
(M2/4)1/2
is approximately normally distributed for large M.

Z:

Run Test

Here the quantity to be counted is the number of runs
{groups) of data above and below the mean. From the theory
of probability, the expected number of runs from a sample size
M is

2ab
u = ﬁ +1
with a variance of
9 2ab(2ab — M)
M2(M - 1)

where a and b are the number of values (mean or variance)
above and below the mean value, respectively, (a + b = M).
If R is the total number of runs observed, then
_ R—u—1/2

a

Z

is approximately normally distributed.

For both tests, any critical value and associated confidence
level can be chosen from a table of standard normal proba-
bilities. For the run test used with small samples {few data
blocks), binomial probabilities and exact tables are available.!®
Since the tests are applied to the sets of block mean and block
variance estimates, a test failure gives evidence that the mean
or variance of the density readings is changing over the
image.

To understand the effect of image nonuniformity on the
Wiener spectrum estimates, consider an image whose local
average density varies across the sample. The nonuniformity

can be thought of as a very low frequency signal (trend) added
to the particle-formed image fluctuations. The calculated
Wiener spectrum estimate would be positively biased by the
square of the Fourier transform modulus of the trend signal.
In addition, a greater (error) variance may be associated with
WS(0) than for a measurement of a uniform sample. Nonu-
niformity of the mean density alone has little effect on Wiener
spectrum estimates at spatial frequencies greater than zero,
unless the nonuniformity has a period on the order of a data
block length or less. This follows from the sampling the-
orem.

Nonuniformity of the measured variance is more difficult
to visualize, but its detection implies changing image density
fluctuations over the sample. This can often occur in con-
junction with a nonuniform mean density, since for most
imaging systems, signal and noise levels are related.?® The
variance of a density trace is equal to the integral of the Wie-
ner spectrum over all spatial frequencies. The Wiener spec-
trum estimate for a sample of nonuniform variance, therefore,
has a greater error at several or all frequencies than for a
measurement of a uniform noise sample.

Conclusion

A method has been presented for estimating the zero fre-
quency Wiener spectrum of an image of unknown average
density. The modulus squared estimate, calculated over short
data sequences, can be modified to estimate this low frequency
spectrum value. One can remove the sample mean from the
data before calculating the estimate, W4(0), or correct the zero
frequency value afterwards, Ws(0). These zero frequency es-
timates are biased; however, for practical measurements the
bias is small, given by 1 — 1/number of blocks. Under certain
conditions, the zero frequency estimates approach the large
aperture noise measurement Ag?,

The simulation experiment results were consistent with the
analysis of the bias and also indicated the magnitude of the
standard deviation of W3(0). The estimated standard devia-
tion was found to be approximately a fraction (2/number of
blocks)?/? times the true Wiener spectrum value. Increased
errors would be expected, however, for measurements of
nonuniform images. Detection of image density nonuniformity
1s possible via the application of the nonparametric run and
sign tests to the sets of block mean and variance values. These
tests can be applied to determine whether data should be
corrected (for example by trend removal) for systematic ef-
fects, such as exposure or development variations.

Appendix

Expected Value of W4(0), W(0), W3(0)

W4(0)

Equation (3) gives the form of WI(O) where no correction is
made for a nonzero mean value

W) = ENAWX %_1 ( gl D(n,m)z] (1a)

Again we make the same assumption regarding the noise
process that are given in Eq. (2), then

B 0) =225 6 (ﬁlmn))2

=LAX [Var(% Dn) + (2a)
n-1

N, 2
B( % b

Using Eq. (2), we find that
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N
E [ ; Dn)| =Nu (3a)

N N
Var ( Zl D(n)) = Y Var D(n)
n=1

N—-1N-1
+2 3 3> Cov(D(n),D())

n=1 [=1
(n>1)
=N 5 s (1 —M) (4a)
0% . a
k=—(N-1) N

This result can be visualized in a matrix notation by summing
all elements of the autocovariance matrix for a block of data.2!
Using results (3a) and (4a), the expected value of W1(0) is

R (1 —m)+N 2]
k=—(N—1)’y N 7
(5a)

E[W,(0)] = LAX

Wy(0)

The estimator W2(0) is defined in Eqgs. (5) and (8). To find
the expected value, we apply the results of Eqgs. (2), (3a) and
(4a)

ED] =wu
_ 1 M N
Var [D] = WVar Z=1 EID(n,m) (6a)
1 MN-1 |k|)
= k)1 ==L
MNk=—(§N—1)7( )( MN,
S R (1 —ﬂ) (Ta)
MN p=—mn-1) MN,

The results (6a) and (7a) are used to derive the expected value
of Wy (0):

E[W(0)] = E[(W1(0)] - LAXNE[D?]
max| 5 vm -4
=LAax| S vk (1= L 4 vz
k=—(N-1) N
—NI[E[D)2 Var [D]]

N-1 |k|
= LAX > ’Y(k)( _TV—

k=—(N-1)
1 N-1 ‘k|)]
- — RY[1—-—]}. (8
Mk=—(N—1)FY( )( MN (8a)

Ws(0)

An alternative correction for the process mean is given by
Eq. (8). The expected value of this estimator can be expanded

into the form,

E[W5(0)] = %\/Iél-\f)g A; [Var [ 1:1 D(n,m)] + N2 Var D]

— 2N Cov /ZV: D(n),D
n=1
The variance terms of the RHS of Eq. (9a) are given by Egs.
(4a) and (7a). The covariance summation is expanded as de-
scribed by Fuller?? for each of the M data blocks and after
{(much) manipulation of the equivalent covariance matrix, it
can be reduced to

N _ N=1 k|
$ pmD|= 'S 7(k)(1——) (108)

(9a)

Cov
n=1 k=~(N~1) MN

Substituting the results of Eqgs. (4a), (7a), and (10a) into Eq.
(9a) yields the same result as Eq. (8a), i.e.,

E[W(0)] = E[W5(0)]

&
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