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Abstract

A model is constructed for the noise-density characteristics of electrophotographic half-
tone images. The model has components relating to the fluctuations: within the dot; within
the background area; and in dot-size. These components are themselves related to the (torer)
particulate nature of the image, enabling comparison to be made with the equivalent contin-
uous tone case.

Introduction

During recent years an increasing amount of attention has been paid to the role of image
noise in electrophotography!~¢ Investigations have covered both physical and psychophysical
aspects, and have included measurement techniques, sub-system analysis, and particulate mod-
els. Most of these investigations have concerned themselves with the fluctuations on nomi-
nally uniform image areas. Less is known about the nature of the fluctuations arising in
electrophotographic halftones, and the purpose here is to construct a particulate model
which relates in detail the noise in halftones to that associated with continuous tones. A
model has previously been proposed® which works well but which is based only on intuitive
reasoning.

By use of the term noise for halftones we imply the image fluctuation in nominally uni-~
form areas. However, these fluctuations are observed in the electrophotographic reproduc-
tion of noise-free halftones in the original. We are thus not concerned with the periodic
fluctuations arising from the patterning of the halftone itself, but with the random fluc-
tuations due to the natural statistical processes associated with electrophotography. The
period of the halftone is assumed to be at a frequency beyond that of prime interest, for
example typically beyond spatial frequencies which contribute to the visual impression of
graininess! Likewise we are not here primarily concerned with either random or determinis-
tic factors which may exist, whose influence is to modify the periodicity (dot positioning
‘errors', halftone frequency variations, etc.). These will typically modify the resonant
peak in the Fourier transform which is associated with the fundamental frequency by broad-
ening or by introducing harmonics. Here we are essentially concerned with the very low fre-
quency value of the equivalent Wiener Spectrum of the noise due to the statistical attri-
butes of electrophotography. In general, factors which modify the periodicity may have a
marked effect on the images of lines in text, or of edges in pictorial material, but will
have a considerably lesser effect within nominally uniform areas.

Due to our interest in the statistical fluctuations in density from dot to dot, we are
concerned with the product Ac? = WS(0), i.e., the product of halftone cell area A with the
mean-square density fluctuation as measured from dot to dot. This will give us an equiva-
lent value of the low frequency Wiener Spectrum of the noise, denoted by WS(0). Further,
if the statistics of dots are completely independent of those of neighboring dots, a density-
measuring aperture of NA will yield the same value, i.e.,

2 - 2
NAGNA AcA

for any value of N, since
1

2 - = 2
°NA T N ‘A
The placement of the scanning aperture NA must however be exactly over NA complete half-
tone cells, and density samples thus taken by moving integral numbers of cells, typically
with a scanning aperture covering 1 cell and moving 1 cell between density readings.

A Model for Fluctuations Within Dot and Background

First we consider how the joint noise obtained by dual-sampling of two adjacent noise
samples is related to the two individual noise levels obtained by sampling each separately.
This corresponds to the halftone problem since we are typically concerned with measuring a
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halftone cell which contains samples of maximum (dot) and minimum (badkground) density.
Initially we ignore fluctuations in the respective sample sizes, and consider them to exist
in fixed proportions.

Suppose the individual mean values of density, reflectance, and (low-frequency) Wiener
Spectrum are D,R,,WS, (0), and D,,R,,WS, (0) respectively. Let the (fixed) respective areas
of the two samples be A, and A, as they appear in the joint sample A, where A = A, + A4,.
Thus the fractional areas will be

£, = %1 £, =B with £, v £, =1 .

The problem is to form the joint values of density, reflectance and Wiener Spectrum, which
we denote simply as D,R and WS(0). The reflectance will be given by appropriate linear
weighting of the separate contributions:

A,R,+A,R,

R=———— = £,R,+,R, (1)

and the density follows simply as
D = -log,, {f;R,+f,R,} (2)

The calculation of the joint Wiener Spectrum is not as straightforward. We recall that in
effect we are considering the cell area A as an aperture which scans joint samples, but dur-
ing scanning A, and A, have always the same fixed values. The only fluctuations thus

arise from within the two individual samples (dot and background), and these individual
contributions are assumed uncorrelated in their influence on the joint fluctuation. From
equation (1) it follows that changes in reflectance will be related to each other according

to
AR = f,AR, + f,AR,
and hence the variances will be related according to

AR?Z = f2ARZ + f2ARZ

which we write as

2 - 2 2 2
g f,ch + fch2 (3)
Since D, = -log,,R, , D, = -log,,R,, it follows that for small fluctuations
ch 2 ch 2
g2 = ! D, , g2 = : D, (4)
Ry (log,,e)? R. (log,.e)?

We now relate these variances in density to the Wiener Spectrum value, by assuming that

AloDi = WS, (0) , AzoDz = WS, (0) ,
(5)
(Ay+R;) 0% = Ao ? = WS(0)
Combining equations (3), (4) and (5) we arrive at
szz 2 fle\Z
f‘(l+fT§T) f2(1+f2R:,

The assumption implicit in equation (3) is that the effective apertures A, and A, are large
enough to act as filters of all but low spatial frequencies. This will depend on the shapes
of the respective Wiener Spectra WS, (w) and WS, (w), and will hold exactly for flat spectra.
It will hold less exactly the more the spectra are rapidly decreasing functions of frequency
In the latter cases the product of aperture and mean-square fluctuation will be greater than
the low frequency value of the Wiener Spectrum, and may be thought of as an upper limit.
Similarly equation (6} will then represent an upper limit for WS(0), and in general the
joint noise will be less than that predicted from the Wiener Spectra of the constituents.
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We can use equation (6) to compare halftone noise with that associated with continuous
tone noise at equivalent image density levels. For exanmple, if we assume WS, (0), R,=1
(noise-free white background) equation (6) reduces to

WS, (0)
(1-f,)
£, 1+ 175
VTR,

WS (0) =

}2

If we now invoke the Siedentopf relationship’, assuming the halftone dots are formed of
random assemblies of mono-sized particles of area a,

WS, (0) = a log,,e D, = a log,,e log,o(% ) (8)
1
Hence
1
= 9
WS(0) = a log,,e loglo(R,) (9)
(1-f£,)
2
f,(1+ R, }

Equation (9) expresses the halftone image noise in terms only of the toner particle size,
and the fractional area and reflectance of the dot. The equivalent expression for halftone
image density level follows from equation (2) as

D = -log, ,{f,R, +(1~£,})} (10)

Equations (9) and (10) can thus be used to predict the noise-density characteristics, which
we wish to compare with those for the equivalent continuous tone density. The latter den-

sity will be defined simply by loglo(ﬁ ), with the corresponding noise already defined ac-

cording to equation (8). Thus for t a given particle area a, we can compare the con-

tinuous and halftone noise characteristics for the assumed dot and background properties

of this example.

100 -
PARTICLE
DIAMETER
80 - HALFTONE 15pM
Us(o) (WITHIN-DOT FLUCTUATION
unana ONLY)
60 -
40 -
° SIEDENTOPF 1opn
20 -
SuUM
9 - 1
0.9 .4000 . 8000 1.200
.2000 6000 1.000
DENSITY

Figure 1. Comparative noise-density characteristics according to model.
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Figure 1 shows computed model noise-density curves for three specific sizes of toner
particle, with diameters 5, 10 and 15 um respectively. As usual, in the random (continuous
tone) case the straight-line nature of the Siedentopf equation results. However, the half-
tone noise is non-linear and in general significantly less than the continuous tone noise
at equivalent image density levels. The two of course coincide at maximum density, where
the dot structure has disappeared (f,=1). The conclusion from the relative shapes of the
two sets of curves is somewhat surprising. 1In principle it appears that a given low image
density level can be achieved using the same electrophotographic process in halftone or
continuous tone modes, but with the former having associated noise levels which are orders
of magnitude less than those in the latter case. This may appear to provide a potential
straightforward noise-cheating technique. However we must consider the basic nature of sig-
nal reproduction by halftones. Modulation of signal is obtained via modulation of dot area,
and so far we have not econsidered statistical noise aspects associated with the latter.

A Model for Fluctuations of Dot Size

We now allow for small variations in A, and A,, subject to the same fixed cell area A.
This will lead to an additional noise term, essentially due to the size variation of the
dots. To do this we assume R, and R, are now fixed, and hence from (1)

R = R,-f, (R,-R,)
and it follows that

ARZ = (R,-R,)? Bf?

which we write as

0,2 = (R,~R,)% o.2

R f,
Since 2
O’Al
2 _
ofl T TA? it follows that for small fluctuations
(R;~R;)? (log,,e)? G 2
WS (0) = A, ) (11)

A(f,R,+ £f,R,)?

The overall image noise has now been defined according to the model, and is obtained by
simple summation of the two components (i.e., equations 6 and 11).

We now ask if oAZ can be cast in terms of a simple particulate model, as for WS, (0) and
WS, (0) in terms ! of Siedentopf, to enable us to make comparisons of the respective
contributions to overall noise for a given toner particle size. One such model readily
follows from simple geometrical considerations. We assume that

A, = n a (12)

where n is effective number of individual particle areas which make up a single dot. Thus

2 = g2 2
°A, “n . (13)

and assuting n 1is a random variable from dot to dot, governed by Poisson statistics, such
that °n2 = n, then

2 = = 7
op a’n ALa (14)
It should be noted that n will generally be much less than n,, depending on the nature of

the relationship between N, and n,. If a relationship of the nature of the Nutting equa-
tion® holds, i.e.,

n,a

A,

D, = log,,e

(15)

n,a

and if D, 1s {(say) 1.3, then it follows that the ratio will be approximztely 3, whereas
by equaticon (12) the ratio will be 1. This is no more ! than restating the well-known
result that to obtain high density levels with a random spatial array of opaque particles
requires a total particle area several times greater than the area being covered by the
particles. However the assumption implicit in eguations (12), (13) and (14) is that it is
the statistics of an effective lower number of particles that govern the dot area fluctua-
tions.
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Substitution of equation ({14) in (11) leads to

(gf -1)? (log,.e)?a
WS (0)=

14%M3

Equation (16) thus achieves our aim of arriving at an expression for the dot area fluctua-
tion in terms of the underlying particulate dimensions. There are however limitations to
the application of this equation, as we shall see from the following calculations.

Numerical Example

We can now compare the fluctuations due to dot area with those previously calculated due
to noise within the dot. 1If again for the sake of comparison we assume that WS, (0)=0,
R,=1, equation (16) reduces to

(% -1)2 (log, ,e) %a
WS(0) = 1 (17)

£, (1 dobalye

154

Comparison of equations (9) and (17) shows that for a fixed particle area the noise due to
dot area fluctuations will be a factor

(%l—l)zlog,oe

1
log., (f,)

larger than that due to fluctuations within the dot. For example, for a dot reflectance
R,;=0.1 this factor would be around 35.

Figure 2 shows the noise-density characteristics corresponding to dot-area and within-dot
fluctuations, compared to the continuous tone equivalent (Siedentopf). We note that the

curve for dot-area approximates to Siedentopf at low image density levels but then increases
in a non-linear manner.

100 -
80 A
Ws (o)
umepe
60 - DOT-AREA FLUCTUATION
40 A
SIEDENTOPF
20 -
WITHIN-DOT
4___’_,,,,,/// FLUCTUATION
] Y T T T T pam
0.0 . 4000 .8000 1.200
.2000 .6000 1.000
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Figure 2. Comparative noise-density characteristics based on 10 um
particle diameter.
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We have plotted this curve only to a density of 0.4, due to implicit practical limita-

tions in our assumptions leading to equation (14). 1In fact the assumption that the area
fluctuation will be driven by an unbound random variation (o _%=n) in the effective number
of particle areas forming the dot area, must by definition break down for larger dot

sizes. In the limit, as the dot size approaches the cell size, the dot area fluctuation
must approach zero. It is thus reasonable to hypothesize that the dot area fluctuation will
in fact be of the form o _%=n {1-g(f,))}, where g represents some function of f, which tends

to unity. For the calculated example a 50% dot (f£,=0.5) corresponds to a image
density level of 0.26. Thus already beyond this density we might expect that the fluctua-
tion in area might already be geometrically constrained. 1In any case, in practice the

geometrical halftone technique will for example switch in some manner from black dots on a
white background to white dots on a black background. This complication is not addressed
here from the model viewpoint, but we will meet this problem again from the viewpoint of
limitations on practical measurements, in the second part of this paper.

Conclusion

We have constructed a model which meets our original intent to relate in detail the noise
in halftones to that associated with continuous tones. The model separates the contribu-
tions to halftone noise from within-dot and dot-area fluctuations, and allows both of these
to be cast in terms of the underlying particulate structure of the dots. The domination of
the contribution due to the dot-area fluctuation has been established.

The second part of this report will be concerned with verification of the model via
practical measurements on electrophotographic halftones.
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