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VERIFICATION OF A METHOD TO ESTIMATE THE

WIENER KERNEL TRANSFORMS OF A NONLINEAR SYSTEM

" Peter D. Burns
and
Jack Koplowitz*

ABSTRACT

A method for estimating the Fourier transforms of the Wiener kernels of a nonlinear system is
presented. In order to verify the method, it is applied to various systems in several com-
puter simulation experiments. The estimates for the Fourier transforms of the first,:second
and third kernels are obtained and found to converge to the theoretical kernel transforms.
The oumber of calculations necessary, and the estimate variance, is considered in comparison
with a time domain method for Wiener kernel estimation.

1.0 INTRODUCTION

In general, a system is specified by an input — output relationship. Knowledge of the output
which is due to a known input is available if one has a mathematical description of the sys-
tem. Such a description is a useful tool for both analysis and design.

The linear time invariant system has been extensively studied and is usually described by its
impulse response or, in the frequency domain, the transfer function. The system description
used here is a generalization of the impulse response, the set of Wiener kernels. Only
single valued, shift (time) invariant, single input-single output systems will be addressed.

Since nonlinear systems occur frequently in many practical applications, it is appropriate to
discuss examples of where the Wiener kernel description may be of value. Consider a transis-
tor whose dc transfer characteristics are parabolic rather than linear. Instead of concerning
oneself with nonlinear system analysis one may choose to merely specify the percent total
harmonic distortion. Harmonic distortion will, however, vary with input signal amplitude and
therefore does not completely describe the system response. A similar situation occurs in

the large area (low frequency) characteristics of many imaging systems [1]. Instead of

input and output being voltage and current values (as with the previous case), one deals with
optical reflectance, transmittance and demsity values.

Nonlinear input—output characteristics are also found in the study of biological systems,
where the Wiener system description has been successfully applied [2,3].

The output of a nonlinear system of the above tyfe which is due to a white Gaussian input
n

can be described by the Wiener series expansion [4]. Wiener represents the system output
by the orthogonal expansion,

y(e) = 26, [k ,x(t)] _ 63
n=0 n
where {k } is the set of Wiener kernels, {G } is the set of orthogonal fumctions and x(t)
is the input. The first four terms (functionals) of the expansion are:
6 [k ,x(©)] =k

cl[kl,x(t)] ‘?IRI(T)X(t-T)dT

Cz[kz yx(t)] 'JI kz(Tl.‘tz)x(t—Tl)x (t—'rz)d'rlid‘r2
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- c!kz(rl,rl)dtl 2)
G4lk,,x(0)] =ff k(1157 T)x(E-T, Ix(e-T,)x(t-7,)dT,dT, dT

2773
- 3(i/:[k ('rl,'rz,'r )x(t--r )dt dr

where the power density spectrum of the inmput is C watts/Hz. The limits of integration are
to be taken from ~~ to 4» unless otherwise indicated. Each term of the series is seen as an
n-dimensional convolution integral operating on the input and a generalized impulse response,
the Wiener kernel of order n. Wiener shows that the Wiener kernels are, or can be made
symmetrical with respect to their arguments, so
ko (T,5T5) = ky(T,,1;)

3)

k (115755 T5) = k('rl,'r3,r2)

The same property holds for the Fourier transforms of the Wiener kernels.

The objective of this work is to verify a method for estimating the Fourier transforms of

the Wiener kernels of a nonlinear system. The form of the estimates was first noticed by
French and Butz [5]. The method is applied to various systems in several computer simulation
experiments and the results shown. The variance of the kernel transform estimate and the
computation required are also considered. A brief discussion of a time domain kernel esti-
mation method precedes the kernel transform estimates.

2.0 WIENER KERNEL AND KERNEL TRANSFORM ESTIMATES
2.1 Wiener Kernel Transform Estimates

Lee and Schetzen [6] present a method for estimating the Wiener kernels by cross-correlation.
They introduce a set of functionals formed from delay circuits with a white Gaussian input.
The first four Wiener kernel estimates are

k
[

kl(r)

Ely(t)]
L ely(ox(e-n)]
ky(1),17,) = 2—:‘:7 E[y(t)x(;-rl)x(t-Tz)]

for 7, #1

2 .
Ky (T)5T5,T,) = e_zi E[y (£)x (-1, )x (t-T,)x(e-1,)]

4

for i3] # Tys Ty # T3,Ty # Ty .
where E indicates the expected value. Successful application of this method has been re-
ported [2,3].
2.2 Wiener Kernel Transform Estimates

The Fourier transform of the Wiener kernel of order n is given by

J(w. T *ootw T )

. _ 11 n (5)
Kn(wl...,wn) —f.../'kn('rl,..‘.,rn)e drl...drn .

The estimates for the first-, second- and third-order kernel transforms are [ 71,

K. (w) = ElX*(w)Y(w)|
1 c

E[X*(w_)X*(w )Y (w 4w )]
1 2 1 2
Ky(wyswy) = o2 (®

for w, # —-w
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Ko(wysw,,wy) = E[X*(Wl)x*(Wz)x*(w3)Y(w14w2+w3)]
T 6c>

(6)
for W # - 23 Wy # ~vgs W # =¥y
where * indicates the complex conjugate. For the second- and third-order
"estimates, impulse functions occur when any two arguments sum to zero.
3.0 SIMULATION EXPERIMENTS ‘i‘O ESTIMATE THE WIENER KERNEL TRANSFORMS
The first-, second-, and third-order Wiener kernel transforms were estimated for several sys-

tems. The diagram in Fig. 1 outlines the experimental procedure which involved simulating a
nonlinear system response to a discrete, white, Gaussian input.
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'FIGURE 1. Outline for kernel transform estimation experiments.

The experiments were repeated many times since the expected values of the estimates should
approach the kernel transforms. The estimates necessitate the discrete Fourier transform
of both input and output signals (sequences) and this is calculated via the fast Fourier
transform algorithm [8].

The first-order kermel transform was estimated for two recursive (I.I.R) digital filters of-
first (low-pass) and second (resonator) order. The first kernel transform is merely the
linear transfer function. The magnitude of the calculated and estimated kernel transform
after 1000 averages for the resonator is given in Fig. 2. The frequency is normalized so
w=1l is the Nyquist frequency.
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FIGURE 2. First-order estimate magnitude after 1000 averages-resonator.
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Experiments to verify the second Wiener kernel transform estimate were performed. The non-
linear systems were of two types; the first consisted of the pervious filters whose output
was squared as shown in Fig. 3.

Linear )

INPUT . 2 OUTPUT
—“Ipigital Filter r X
x() ytd) yS(t)

FIGURE 3. System configuration used in second-order kermel transform experiments.
The second-order kernel transform for a system of the above form is [9]
K,y (wy,w,) = T(w))T(w,) @

where T(w) is the transfer function of the appropriate digital filter. A perspective plot
of the magnitude of the kernmel transform estimate after 2500 averages, for the resonator
nonlinear system, is given in Fig. 4. The second type was a three-stage system consisting of
a linear subsystem cascaded with the output of the system of Fig. 3. The second-order esti-
mates approached K(wl,wz) except where Wy = -w,, as expected from equation (6).
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FIGURE 4. Second-order estimate magnitudebafter 2500 averages-F resonaforhnonlinear system.

Two experiments were performed to verify the third-order kernel transform estimate. The
two nonlinear systems consisted of the linear filters whose output was cubed. Again, the
estimates approached the calculated kernel transforms.

4.0 VARIANCE OF THE ESTIMATE AND COMPUTATION NECESSARY

During the experiments of Section 3.0, an estimate of the variance of the kernel transform
estimate was obtained. The estimate of the estimate magnitude variance was

N

T a1 k3 2

~2 Kn(w,..,wn) Kn(wl,..,wn)li

5 (wl’“,w y = i=]

n N-1 ®

where ﬁi is the ith estimate of order n and i; is the estimate after N (complex) averages.

The expression (8) was calculated for several points of estimates. For the first kermel,

G approached the kernel magnitude value. The value of G approached approximately four

and twelve times the kernel magnitude value for the second and third kermels. This suggests
the estimate standard deviation is one, four and twelve times the magnitude for n=1,2,3.

4.1 COMPUTATION NECESSARY FOR WIENER KERNEL ESTIMATION

The original sampling of x(t) and y(t) specifies the Nyquist frequency. This restricts the
frequencies over which.one can estimate K_ via equation (6) since one has no information

of Y(w,+...+w ) for values of the argumen% greater than the Nyquist frequency. This can

be shown to reduce the necessary computation by a factor of n![5]. The expression for the
approximate number of real multiplicatioms needed for the kernel transform estimate of order ’
n, real input/output of length N,rnoting symmetry [7], is

N n N
2[N log, 5 + 2N + (n')2] . 9
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If the variance of the single estimates are inferred from the experimental results, the
number of averages needed for a given average estimate variance is known. This follows

i{f the variance is inversely proportional to the number of independent estimates averaged,
as for the power spectrum [10]. This is given in Table 1 for 5% variance, as is the
approximate number of real multiplications for N=64.

TABLE 1

COMPARISON OF MULTIPLICATION NECESSARY FOR
VARIOUS ESTIMATES (DATA LENGTH 64, 5% VARIANCE)

Estimate No. of ¥o. of No. of Points Mult/Point Ratio
Averages Real Mult. .of Estimate

Power Spectrum 20 1.0 x 106 64 160 1
lst Kernel 20 1.8 x 10° 64 280 1.8
Transform

2nd Kernel 320 16 x 10° 2048 780 4.8
Transform

3rd Kernel 2880 12.8 x 10’ 4.4 x 10° 2.8 x 100 17.5
Transform

A final comparison is made of the relative efficiency of the time domain and frequency domain
estimates. Consider the number of real multiplications needed for the discrete estimate of
the nth kernel of the form of equation (4). The estimate requires approximately
n

MN

(D)1 (10)
real multiplications, exploiting kernel symmetry, where M is the entire record and N is the
(shift) length of the estimate.

Lee and Schetzen [6] estimated the second Wiener kernel of a nonlinear system. The kernel
estimate was from data, M, equal to 30,000. That is, each point of the estimate was the
result of 30,000 averages and achieved an RMS error of 0.6%Z of the maximum value. A similar
experiment was performed with the second kernel transform estimate. The mean squared error
was found inversely proportional to the number of averages. After 100 averages the MS error
was found to be 3.55%Z. Extrapolating, it would take 98,600 averages to reach an RMS error
of 0.6%. .

Consider the number of real multiplications required for the second kernel estimate for M
equal to 30,000 and the second-order kernel transform estimate averaged 98,600 times for N
equal to 128. From equation (10) the number of real multiplications required for the cross-
correlation estimate is 4.92 x 108, The number of multiplications needed for each kermel
transform estimate from equation (9) is 1.84 x 10%. This must be calculated 98,600 times
which requires 1.81 x 109. The approximate ratio of real multiplications for time/frequency
domain methods is 1/3.6, for this example.

5.0 CONCLUSIONS

To verify the Wiener kernel transform estimate method, it has been applied to several non-
linear systems in a series of computer simulation experiments. The systems consisted of
feed-through interconnections of linear and nonlinear subsystems. The estimates of the
Fourier transforms of the first, second and third kernels were obtained and found to approach
the theoretical kernel transforms. .

Experimental results suggest that the single kernel transform estimate standard deviation is
one, four and twelve times the value of the kermel transform for ‘the first, second and third
kernels, respectively.

As a measure of the computation, the approximate number of real multiplications necessary for
the kernel transform estimates has been considered. For a data length of 64 and 5% variance
the first, second, and third kernel transform estimates need 1.8, 4.8 and 17.5 times as many
real multiplications per estimate point as does the power spectrum estimate. The number of
real multiplications needed substantially increased with increased order n and data length.

For comparison of the time and frequency domain second Wiener kernel estimates the number of
real multiplications necessary for each to achieve a desired RMS error was calculated. The-
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large variance associated with the kernel transform estimate required approximately 3.6 times
more multiplications.
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